
 
 
 
  

 

Object-Oriented Pro-
gramming with C# 
Object-Oriented Programming, Part I 

By Per Laursen 
08-08-2022 
 



1 
 

INTRODUCTION ............................................................................................................................................. 3 

THE OBJECT CONCEPT ................................................................................................................................. 4 

State and Behavior ................................................................................................................................................................ 4 

Public and private appearances ............................................................................................................................................ 6 

THE CLASS CONCEPT .................................................................................................................................... 9 

Using objects of an existing class ........................................................................................................................................ 10 

Code Quality, part II ............................................................................................................................................................ 14 

Further on object creation .................................................................................................................................................. 15 

Value types and Reference types ........................................................................................................................................ 16 

CLASS DEFINITION ELEMENTS .............................................................................................................. 21 

Instance fields ..................................................................................................................................................................... 23 

Properties ............................................................................................................................................................................ 24 

Auto-properties .................................................................................................................................................................. 28 

Methods .............................................................................................................................................................................. 29 

Constructors ........................................................................................................................................................................ 32 

CLASS COLLABORATION, AND A BIT ABOUT ABSTRACTION ...................................................... 36 

STATIC – NO OBJECT NEEDED ................................................................................................................ 38 

EXERCISES .................................................................................................................................................... 40 

OOP.1.1 ............................................................................................................................................................................... 40 

OOP.1.2 ............................................................................................................................................................................... 41 

OOP.1.3 ............................................................................................................................................................................... 42 

OOP.1.4 ............................................................................................................................................................................... 43 

OOP.1.5 ............................................................................................................................................................................... 44 

OOP.1.6 ............................................................................................................................................................................... 45 

OOP.1.7 ............................................................................................................................................................................... 46 

OOP.1.8 ............................................................................................................................................................................... 47 



2 
 

OOP.1.9 ............................................................................................................................................................................... 48 
  



3 
 

Introduction 
 
Before the emergence of Object-Oriented programming, is was hard to establish a 
connection between the data and the functions belonging to a specific real-life con-
cept, like a “student” or “employee”. You could e.g. use a naming convention that 
would imply that certain data and functions were related, but it was still difficult to 
create a “unit” of some sort in your code, that would correspond to a specific con-
cept in the domain you were trying to model. Object-Oriented programming (or just 
OO-programming) introduces concepts to allow just that! 
 
 

  



4 
 

The Object concept 
 

The central concept in OO-programming is the object. An object is something that is 
created (in the memory of the computer) when your application runs. Objects are 
created, used for certain purposes, and may also disappear again when they have 
served their purpose. If your application is a school management system, the appli-
cation may start by reading data from an external source, and use that data to create 
several objects. Each object will be of a certain type; in a school management system, 
you might have objects of type Student, other objects of type Teacher, and so on. 
The objects may be used for many purposes, like being shown on the screen, used for 
certain calculations, etc.. All that will (of course) be defined by the C# code somebody 
wrote for creating the application. 
 
This might sound radically different than the simple types and variables we have seen 
so far – and it is! However, there is nothing magical about it. From the computer’s 
point of view, things are represented the same way as before. Object-orientation is 
thus only a tool for making it easier for humans to express (human) logic in terms of 
code. If there is anything close to magic going on, it is perhaps inside the compiler 
itself, which has the rather formidable task of translating human-friendly code into 
(radically different) machine-friendly code… 
 
 
State and Behavior 
 
The fundamentally new idea in OO-programming is to join both data and logic into 
single units (objects). In the OO-world, some different terms are used: 
 

• When talking about the data contained in an object, we usually refer to the 
state of an object. 

• When talking about the logic contained in an object, we usually refer to the 
behavior of an object. 

 
It requires a bit of practice to be comfortable with these terms. As a specific example, 
suppose we have an object called john in our code. For now, we don’t worry about 
how such an object is created – we’ll learn that very soon. We already know that an 
object has a type – the type for the object john is called Human (very soon, we will 
also learn where such a type as Human comes from). So, the object john is supposed 
to represent a human being. More precisely, we can say that the object john repre-
sents a model of a human being, i.e. that model which is defined by the type Human. 



5 
 

Exactly what this model contains will be very situation-specific. In some applications, 
we may only need a very crude model of a human being, which only contains a little 
bit of state-and-behavior. Other applications may require use of a much more detail-
ed model. 
 
Suppose that john is a fairly simple object (i.e. Human is a very simple model of a 
human being). What “state” is the object john in? We defined above that the term 
“state” is related to data, so a “state” is simply a set of values, which in total describe 
the state that this particular object is in, at a given moment in time. In this simple 
example, we could define that the only relevant data is the name, weight and height. 
So, if we can obtain these three values, we will know what state the object john is in. 
You can think of the object john as a little box containing the described data: 
 
 
 
 
 
 
 
 
 
During the entire lifetime of the object john, we expect that it will always contain 
these three values, and that each value will always be meaningful. A natural way to 
use the object could then simply be to retrieve information from the object, if we 
need it for some purpose. Imagine that there are a lot of objects of the type Human 
present, and we want to calculate the average height for all of them. We would then 
“ask” each object for that particular information, and expect the object to “respond”.  
 
More generally, we will usually want to be able to “ask” an object for information 
about its “state”. We may even want to be able to change the state of an object, by 
providing the new value for a particular piece of the state. Maybe the real-life John 
has gained a bit of weight, so we would like to update the value of Weight to 90. 
 
 

john 
Name:   John Smith 
Weight:  85 
Height:  185 



6 
 

Public and private appearances 
 
When you look at Name, Weight and Height in the blue box above, you may – very 
naturally – think “Ah, that’s just three variables! One of type string, and two of type 
integer”. The truth is slightly more complicated, however. As a first version of our 
object, it would indeed be very natural to define it to contain three “variables” (we 
will soon see that a different term is used for such “variables” inside objects), and 
also that we should be able to – for each variable – get its current value and update 
its value. Suppose now that we also want to know if an object – or rather; the person 
represented by the object – is overweight. One – rather crude – definition of over-
weight is that if your so-called BMI (Body Mass Index) is higher than 25, you are con-
sidered to be overweight. The BMI is defined as: 
 

BMI = (weight in kilograms) / (height in meters)2 
 
Calculating the BMI with the numbers for john given above gives a BMI value of 24,8. 
Good for John! But the pending question is: should we add a fourth variable to john, 
to hold the value of the BMI? It’s tempting to do this, but consider the definition of 
BMI. It only uses information that is already present inside the object! Adding one 
more variable would therefore be a bad idea for three reasons: 
 

• The object would use a bit more memory 

• If you update the value of either Weight or Height, you must also update the 
value of BMI 

• You may risk that the information inside the object becomes inconsistent! 
 
The last two points are closely related; you should definitely1 avoid having redundant 
data in an object! Not only simple, duplicated data, but also data that can be calcula-
ted from other data. So, no fourth variable inside john! 
 
Deciding not to keep the BMI explicitly represented inside the object does however 
not solve the original problem: we wish to be able to ask the object what its BMI is, 
and we don’t want to calculate it ourselves. The last point is important; even if we 
would be able to calculate the BMI ourselves, by extracting the relevant information 
from the object, we should not have to be burdened with this. We should not need 
to know the details of BMI calculations, since we are only interested in the result! 
 

 
1 ”Definitely” is a bit dogmatic, since there are certain cases where it might be a reasonable compromise to explicitly 
store data that could be calculated, e.g. if the calculation is very time-consuming, and the value is typically used many 
times before it needs to be recalculated. 



7 
 

This discussion brings us to another powerful feature of objects: the way an object 
“presents itself” to the outside world (i.e. the state-and-behavior the outside world 
can obtain from the object) may differ from how state-and-behavior is represented 
inside the object itself! In our case, the outside world is interested in knowing about 
four different properties of the object john: the Name, Weight, Height and BMI. 
However, the clever creator of john – or more precisely, the type Human of which 
john is one instance – has figured out that we actually only need to store the three 
first values inside the object: 
 
 
 
 
 
The outside world 

 
 
You can think of an object as having a “public” and a “private” side. The public side is 
how the object presents itself to the outside world, i.e. what state-and-behavior the 
object makes available to the outside world. The private side is how the state-and-
behavior is actually represented inside the object. In some cases, the relation betwe-
en public and private is straightforward: the (public) property Height is simply the 
value of the (private) variable height inside john. In other cases, the relation may be 
more complex, as we just saw for BMI. However, the outside world doesn’t need to 
know about this complexity. The BMI is “just another property” and can be treated as 
such. 
 
This ability seems to solve our problem. We can present a simple set of public pro-
perties to the outside world, and hide away the details of implementation inside the 
object. There is a slight complication, though. We have argued that an external user 
should be able to obtain – and change – the value of a property. In the example, this 
makes perfect sense for Name, Weight and Height. But what about BMI? It does not 
make sense to set the value of BMI directly, since there is no corresponding variable 
inside the object…. Now what? Fortunately, the C# language makes it possible to set 
restrictions on what an external user can do with a property. For most properties, 
you can both get (i.e. retrieve the current value) and set (update the value) the value 
of the property, but you can also specify that only the get-part is available. That 
would be a natural restriction to put on the BMI property. 
 

John (private) 
name:   John Smith 
weight:  85 
height:  185 

John (public) 
Name:   John Smith 
Weight:  85 
Height:  185 
BMI:  24,8 
 



8 
 

The above concerns the “state” of an object, and how an external user interacts with 
it. The “behavior” part is similar, and it may sometimes be hard to see exactly where 
to draw the line between interaction relating to state or to behavior. As a somewhat 
vague definition, we can say that behavior is something we invoke to make an object 
“do something”. A behavior will be implemented in terms of a method (which is 
essentially the same as a function) that an external user can call, in a manner very 
similar to calling a function. A simple example could be a method called PrintInfo,  
that prints some information about the object, in our example something like this: 
 
“Hi, my name is John Smith. My height is 185 cm, and my weight is 85 kg”. 
 
This is a “behavior” – when we invoke this particular behavior on the object john, this 
line is printed on the screen. It does not change the state of the object, however. We 
will of course see examples of more interesting behaviors later. Just as for state, it 
may also sometimes make sense to define certain behaviors (i.e. functions) to be 
“private”, for instance if their only purpose is to help in the implementation of more 
complex, publicly available behaviors. 
 
 

  



9 
 

The Class concept 
 
We have several times claimed that all objects must have a type, and that the object 
john has the type Human in the example above. Where do these types come from, 
and how do you define such a type? 
 
In C# – and in OO-languages in general – types are defined by a class definition. A 
class definition is where you define all the features that every object of this class will 
have. This includes: 
 

• Publicly available properties 

• Publicly available behaviors (called methods) 

• Private data structures, properties and methods needed to implement the 
public properties and methods. 

 
Once a class definition has been completed, it will be possible to create objects of 
this particular class. The type of such an object is thus said to be the name of the 
class, i.e. the type of the object john is Human. Note that we now have two cate-
gories of types in our type “universe”: the “simple types” like int and bool, and the 
“class types” like Human. Instances of these types have fundamentally different 
behaviors, which we will investigate in more detail shortly. 
 
It makes sense to distinguish between the creator of a class definition and a client of 
a class (by “client” we here mean a part of the code which needs to use objects of a 
particular class). The creator will of course know about all details – both public and 
private – of the class, while the client only needs to know about the public parts. 
From the client’s perspective, the class is a kind of “black box”; the client can create 
objects of a particular class, and can interact with the objects through the public 
parts (often called the interface) defined in the class definition. However, the client 
cannot – and should not – obtain information about the internal structure of the 
class. 
 
This separation of the public and private side of a class also enables a certain degree 
of freedom, with respect to changes in code. If a client uses objects of a certain class, 
the client only uses the public part. So, as long as the public part remains unchanged, 
it is possible for the creator of the class to update the code inside the class definition, 
e.g. to fix errors or improve performance, without affecting the client. 
 
 



10 
 

Using objects of an existing class 
 
Before we dive into the details of how to define a class, we take a look at how to use  
an already existing class. The first question would naturally be: what classes are avail-
able for use? Class definitions can come from several sources, including: 
 

• The .NET class library: The C# language is actually just one part of a larger soft-
ware ecosystem called .NET, created by Microsoft. A part of this system is a 
very large collection of ready-to-use classes, called the .NET Class Library. It is 
well beyond the scope of these notes to detail the content of the library, but 
once you get to a level where you need to create fairly sophisticated software, 
you may often find a class in the library that suits your needs. 

• Third-party suppliers: The classes in the .NET class library are usually quite 
general, and are not focused on a particular real-world domain (say, finance). 
Some companies develop smaller, more specialized class libraries, that you (or 
your company) can license for use in your own projects. 

• Open source: Just as for other kinds of software, there is also a fair amount of 
open-source C# code available from various sources. 

• Your company: Most companies dealing with software development will deve-
lop a code base over time, which might also contain useful classes. 

• Yourself: If all of the above fails, you may have to write a class definition your-
self. This should be your last resort ☺. 

 
There are various ways to try to navigate your way through a class library, and the 
easiest solution is often to use Google (or whatever search engine you prefer) for the 
job. Microsoft has recently made some effort to create a “portal” for .NET documen-
tation2, which is also a good starting point. The mechanics for making a class available 
for use in your project can vary a bit, and we take a closer look at that later. For now, 
we will just assume that class definitions can be made available. 
 
Let us assume that a class definition for a class called Student is available. We should 
then be able to create an object of class Student. In C# code, this is done like: 
 

Student firstStudent = new Student(); 

 
This line contains some new elements, but also elements we have seen before. 
Compare it with a line of code we should be familiar with now: 
 

 
2 https://docs.microsoft.com/da-dk/dotnet/ 



11 
 

int age = 18; 

 
The overall structure of these two lines is actually the same: 
 

• A type name (remember that a class is also just a type) 

• A variable name 

• The assignment operator (=) 

• A right-hand-side 
 
For the second line, the right-hand-side is very simple; just a numerical value. The 
right-hand-side in the first line is more spectacular: 
 

new Student(); 
 
This line reads: “please create an object of the type Student”. The keyword new is 
crucial here; this instructs the application to create a brand new object of the class 
Student. The creation process is then set in motion, which essentially involves: 
 

• Allocating a memory area, to hold the data that is part of the object. 

• Running a piece of initialization code defined in the Student class definition, 
which ensures that the object is in a meaningful state once it has been created. 

 
Note that we as clients of the class do not need to know exactly what happens during 
this initialization; we just need to know that the object is ready for use, once it has 
been created. 
 
Once the line has completed, a brand new object of type Student has been created, 
and the variable firstStudent refers to that object. Note the term “refers to”, as op-
posed “is equal to”. When we deal with objects, the assignment process is a bit more 
complex than assignment of primitive types like integers. When object creation is set 
in motion by the new keyword, we are in a sense making a method call. The return 
value of that call is a reference to an object. This also implies that the type of the 
variable firstStudent is not Student, but rather “reference to a Student object”. We 
discuss this distinction and its implications in a moment; for now, we will just see 
what we can do with this variable. 
 
Given the variable firstStudent that now refers to a Student object, we can now 
interact with the object through this variable. Suppose that the class creator has 
decided that the Student class should contain a (public) property called Name. How 
do we then retrieve the value of that property from the object? Like so: 



12 
 

 
string name = firstStudent.Name; 

 
The most important thing to notice is the use of the “.” (dot) just after the variable 
firstStudent. This is how you specify that you want to interact with the object that 
firstStudent refers to. This is an extremely important point to understand! When you 
wish to interact with an object, you must specify what object you wish to interact 
with. Suppose we created not just one, but a couple of Student objects: 
 

Student firstStudent = new Student(); 
Student secondStudent = new Student(); 

 
firstStudent.Name = "Allan"; 
secondStudent.Name = "Jane"; 

 
Console.WriteLine(firstStudent.Name); 
Console.WriteLine(secondStudent.Name); 

 
What will this code print on the screen? First Allan, then Jane. Even though both ob-
jects have the same type, they can easily be in different states. Just as most humans 
have different names, weight, height, etc., but are all of the class Human. A common 
beginner’s mistake is to write code like: 
 

Student.Name = "Carl"; 

 
That does not make sense, because Student is not an object; it is the name of a class 
definition (it does, however, turn out that code like the above can make sense some-
times, but we will cross that bridge a bit further down the road…). 
 
Just as you might wonder how we get to know what classes we have available, you 
may also wonder what properties and methods we have available for (objects of) a 
particular class. Again, there might be various sources of information available, but 
the Visual Studio environment can also help you. As soon as you type the (.) dot after 
a variable that refers to an object, Visual Studio will pop up a list box with all those 
properties and methods you can make use of. Scrolling to a specific entry will often 
pop up some additional information about this specific entry. If you add comments 
formatted in a specific way to your own class definitions, those comments will actu-
ally also pop up when using objects of that class. 
 
The example above illustrated how to retrieve a property from an object, i.e. a part 
of the state of the object. How about behaviors? Behaviors – in the form of methods 
– are invoked (or called, as we will usually say), in a very similar manner. Suppose we 



13 
 

have defined a method PrintInformation, that does just that; prints out information 
about the object in a human-friendly way. Calling this method will look like: 
 

firstStudent.PrintInformation(); 

 
This is very similar to what we just saw for properties, except for a subtle difference: 
the parentheses following PrintInformation. When a method is defined, the author 
can choose to define that method requires a number of parameters. You can think of 
a method parameter as a special kind of variable, which can be used to pass data to 
the method when the method is called. Some methods do not require parameters – 
the PrintInformation method finds the information it needs inside the object on 
which it is called, so the caller of the method need not provide any extra information. 
A method that does not need extra information – i.e. it takes zero parameters – will 
be called as above, using the method name followed by an empty set of parentheses. 
 
Imagine now that we have a class that provides very simple mathematical methods 
like Add, Multiply, and so on. Would it make sense to have an Add method taking 
zero parameters? Not really – we need to tell the method what values to add. An 
Add method with two parameters would make more sense, so we could make calls 
like Add(3,7). The value returned by Add can be picked up in a variable, like: 
 

int result = myCalculator.Add(3, 7); 

 
Are the values 3 and 7 then “parameters” to the Add method? Actually not. We usu-
ally distinguish between method parameters and method arguments.  
 

• The term parameter is used in relation to the definition of a method; we can 
e.g. say that the definition of the Add method states that Add takes two para-
meters. 

• The term argument is used in relation to calling a method; we can e.g. say that 
we called the method Add with two arguments: 3 and 7. 

 
An argument to a method will thus be a specific value (or an expression which is eva-
luated before the method is called), which is then passed to the method through the 
method parameters. If multiple arguments need to be specified, they are simply writ-
ten one after another (separated by comma) within the parentheses. 
 



14 
 

We used two specific values in the example, but we can actually put any sort of ex-
pression into an argument list, as long as the type of the result matches the expected 
type of the argument! This is also a very important point. We have here assumed that 
the Add method takes two integer values as arguments. A call like the below would 
therefore be illegal: 
 

int result = myCalculator.Add("3", "7"); 

 
However, the below is indeed legal, but maybe a bit mind-bending: 
 

int result = myCalculator.Add(myCalculator.Add(1,2), 3*4); 

 
Again; we can put any expression we can dream up into an argument list, as long as it 
evaluates to a value of the expected type! 
 
 
Code Quality, part II 
 
You may have noticed that we use a slightly different standard for naming classes, 
properties and methods, than we have used for variables so far. For classes, proper-
ties and methods, we also use the camelCase standard, but now with a capitalized 
first letter! The argument is – again – that this is a widespread standard, and we see 
no reason not to adopt it as well. This standard is often referred to as PascalCase. 
 
We also – again – note that we should strive to give all our classes, properties and 
methods descriptive names, to increase the clarity of the code. However, the naming 
of properties and methods should take the class within which they are defined into 
account. What does that mean? If you are creating a class named Student, and this 
class contains a property that can retrieve the name of the student, it might be temp-
ting to name this property StudentName. Such a naming is too verbose. If you are 
dealing with a Student object, it should be pretty obvious what a property named 
Name will return.  



15 
 

Further on object creation 
 
Previously in this chapter, we claimed that you could create a Student object in the 
following way: 
 

Student firstStudent = new Student(); 

 
That is probably also correct, but it will depend a bit on what options the creator of 
the Student class has made available for object creation. Recall that we claimed that 
using the new keyword would cause certain actions to happen: 
 

• A memory area is allocated, to hold the data that is part of the new object. 

• A piece of initialization code defined in the Student class definition is executed, 
to ensure that the new object is in a meaningful state once it has been created. 

 
The second part doesn’t really hold up, if you think about it. We have not given any 
details about the definition of the Student class, but it would be reasonable to expect 
it to provide several properties, for instance Name, Address, DateOfBirth, and so on. 
If you create a Student object as defined above, what state will it then be in? What 
would the Name property return? Probably nothing (e.g. an empty string), because 
we have not provided any information as part of the creation process! That is hardly 
a realistic modeling of the real world. In a school administration system, you would 
probably not be able to create a new student in the system, unless some minimal 
amount of information is available (e.g. name, address and social security number). 
 
Likewise, it seems reasonable to enforce a similar restriction on creation of Student 
objects. We should not be able to create a Student object with no information in it, 
since such an object is meaningless. Fortunately, the class creator can enforce such 
restrictions. With the knowledge we now have, we can see that the code for object 
creation looks similar to a method call: 
 

Student firstStudent = new Student(); 

 
Note the (empty) parentheses. The object creation does in fact involve a method call, 
to this “initialization code” we have mentioned before. Just as for any other method, 
the class creator can define that the method for object creation includes a number of 
parameters. A more realistic version of the above code could then be: 
 

Student firstStudent = new Student("Allan Smith", 1988); 

 



16 
 

In this case, we must provide two arguments (i.e. actual values for name and year-of-
birth) in order to create a Student object. Now it seems more plausible that a just-
created Student object will be in a meaningful state from the moment it is created. 
 
Deciding exactly what information to consider mandatory for object creation will of 
course be highly situational, and it turns out that the class creator can provide several 
“versions” of the object initialization code, each taking different sets of information 
as parameters. Ultimately, the requirement specification for the application will dic-
tate what versions that should be made available. In the terminology of class defini-
tions, such a piece of initialization code is known as a constructor (a method called 
when an object is “constructed”). 
 
 
Value types and Reference types 
 
Before we dive into how to create class definitions ourselves, we need to understand 
a fundamental difference between objects and variables of so-called simple types. 
 
Simple types are some of those types we saw early on in these notes, like int and 
double. We saw that we can e.g. define variables of a simple type, like: 
 

int age; 

 
We can also assign a value to such a variable, like: 
 

age = 18; 

 
We can even do both in one line, like: 
 

int age = 18; 

 
For objects, things looked a bit different. Object creation involved the use of the 
keyword new, like: 
 

Student firstStudent = new Student("Allan Smith", 1988); 

 
The syntax on the right-hand-side is thus a bit more complicated, when we are 
dealing with objects. The left side – i.e. where the variable is defined – looks pretty 
much the same. However, there is a subtle – but quite important – difference. 
 



17 
 

When you define a variable of a simple type like int or double, and subsequently 
assign a value to it, the content (when looking directly into the computer’s memory) 
of the variable will be that actual value, which is probably what you would expect. 
Such a variable is therefore known as a value-type variable. 
 
However, if the type of the variable is a class (like above, where firstStudent is of 
type Student), the content of the variable is not the object itself, but instead a 
reference to the object. You may recall that we earlier on stressed that a variable like 
firstStudent has the type “reference to an object of type Student” rather than just 
Student. The reference is as such just an address specification into the memory of 
the computer; the important point to grasp is that the variable does not contain the 
object itself, only a reference or “handle” to it. Such a variable is therefore called a 
reference-type variable. These considerations give rise to (at least) two questions: 
 

• Why does this difference exist? 

• Should I care? 
 
The first question is hard to answer precisely without getting into rather technical 
details about computer memory management in C# programs, but it is to some 
extent a consequence of the fact that simple types have been around longer than 
classes and objects. When the concept of classes and objects entered programming 
languages, it was realized that a more advanced form of memory management was 
needed, but the existing, simpler memory management was retained for the simple 
types. The fact that this difference exists is simply something we as programmers 
must embrace. 
 
Should you care about it? Yes, because this difference has some consequences that 
will seem quite surprising, if you don’t know a bit about what happens “under the 
hood”. Buckle up… 
 
Consider first two variables of a simple type, like int. We can create them like this: 
 

int age1 = 18; 
int age2 = 21; 

 
These two variables will occupy two separate areas of the computer memory, as 
illustrated below: 

 
 

18 Age1 21 Age2 



18 
 

 
 
We can change the values of the two variables as we wish, even using the value of 
one variable to set the value of the other: 
 

age1 = age2; 
age2 = 23; 

 
 
 
 
For objects, things work in a different way. The statement 
 

Student s1 = new Student(); 

 
will create a new Student object somewhere in memory, and set s1 to be a reference 
to that object (we have momentarily suspended our intention of giving descriptive 
names to all variables…): 

 
 
 
This is by itself not really something we need to think much about, since we know 
how to interact with an object through the reference (e.g. s1.Name). Let’s bring one 
more variable into play, and update the code to: 
 

Student s1 = new Student(); 
Student s2 = s1; 

 
How many variables have we created? Two. How many Student objects have we 
created? Only one! But both variables (of reference type) now refer to the same 
Student object, like so: 

 
 
 

s1 (Student object) 

s1 (Student object) s2 

21 Age1 23 Age2 



19 
 

Is that a problem? Not as such, but try to guess what the code below will print on the 
screen: 
 

s1.Name = "John"; 
s2.Name = "Allan"; 

 
Console.WriteLine(s1.Name); 

 
If this didn’t surprise you… well, good for you! Some might guess that John would be 
printed, since we set the Name property for s1 to “John”. However, the next state-
ment will overwrite that value, since s1 and s2 both refer to the same object! Saying 
that we “set the Name property for s1 to John” is too simplified. What we actually do 
is to “set the Name property for the object referred to by s1 to John”. As it happens, 
s2 also refers to that object, thus overwriting the value we previously assigned to the 
Name property. The assignment statement we saw previously: 
 

Student s2 = s1; 

 
will not create a new Student object, by only set the references equal to each other! 
 
An additional difference between value-type and reference-type variables is the fact 
that reference-type variables can be set to refer to… nothing. The special keyword 
null is available for this particular purpose: 
 

Student s1 = null; 

 
This is often used in practice; you may have some sort of complicated object in your 
code, that is only created if certain circumstances apply. The fact that a reference-
type variable can be equal to null does however make it more complicated to use 
such a variable for e.g. calling a method. Suppose that s1 is indeed equal to null. 
What should happen if you try this?: 
 

Console.WriteLine(s1.Name); 

 
s1 does not refer to any object, so there is no way to retrieve a name… If you try this, 
Visual Studio will respond with an error message reporting a “null pointer exception”. 
Trying to use a null reference is a very common error in programming, and is some-
thing you will need to anticipate and handle. We do not really have any tools to pro-
perly handle such a situation yet, but a slight modification of the line above will actu-
ally make it more robust w.r.t. handling null: 
 

Console.WriteLine(s1?.Name); 



20 
 

 
Note the addition of the question mark just before the “dot”. The question mark and 
the dot combined (i.e. “?.”) is known as the null-conditional operator. That sounds 
very fancy; what it does is however fairly simple: 
 

• If the variable just before the operator (in our example: s1) is null: do nothing. 

• Otherwise, do the part after the operator (in our example: get the value of the 
Name property) 

 
This operator makes it very simple to prevent null pointer exceptions, but it is not a 
silver bullet; you still need to consider what should happen if a variable is indeed null 
at some point. In some cases it might be as intended, but it may in other cases be a 
symptom of an underlying problem in your logic, which you should then find and 
solve by other means. 
 
TBD: maybe add something about nullable types here…? 
 
This chapter should have provided you with enough knowledge to be able to use 
existing classes, by creating objects and using the available properties and methods. 
Next, we shall see how to create our own class definitions.  
 
 

  



21 
 

Class definition elements 
 
Being able to define your own classes provides you with the ultimate ability to create 
“packages” of functionality, that fit exactly to your needs. It is, however, still worth 
the effort to explore various sources for existing classes first. The amount of available 
classes is ever-growing, and one of those classes may be a close-enough fit. 
 
With that in mind, we will embark on the – somewhat large – topic of creating classes 
from scratch. Visual Studio will help you get started: Highlight a project in the Solu-
tion Explorer window – this could be the Sandbox project we have used previously –
right-click to bring up the context menu, and choose Add | Class. Choosing this entry 
brings up a dialog window, where you simply enter the name of the class you wish to 
create, in the text box at the bottom: 
 

  
 
To create a class called Human, simply type “Human” (without the “”) into the box, 
and hit the Add button. 
 
This sets a couple of things in motion in Visual Studio. A new file called Human.cs is 
added to the project, and the file is also opened by Visual Studio in the editor area. 
The initial content of the file should look like this (there might also be some lines at 
the top of the file starting with using; ignore those lines for now): 
 



22 
 

namespace Sandbox 
{ 

internal class Human 
{      
} 

} 
 
This may look somewhat confusing, and certainly contains several elements we have 
not seen before. We will talk about these elements later on, but for now, please do 
the following: 
 

1. Delete the entire content of the file Human.cs 
2. Replace it with the below code: 

 
public class Human 
{     
} 

 
This is an absolutely minimal definition for the class Human. With this alone, we can 
actually start to create objects of type Human, but they will not be very interesting, 
since they have neither state nor behavior.  
 
What do the parts of this definition mean? Let’s break it down: 
 

• First is the keyword public. This is an access specifier, which tells us that this 
class can be used by everyone else. You might wonder if you would ever 
choose otherwise, but once you create larger projects, it may make perfect 
sense to keep some classes non-public, e.g. only to be used internally in the 
application code (this was actually the intent of the internal keyword in the 
auto-generated code). In these notes, we will almost always create public 
classes. 

• Next is the keyword class. This simply tells us that a class definition will now 
follow. 

• Then follows a {, often referred to as a curly bracket. This symbol – along with 
the counterpart symbol } – are the delimiters of the class specification. Every-
thing related to the class definition must be placed within these brackets. 

 
The specific content of a class definition will of course vary from class to class. How-
ever, the content falls in a few well-defined categories, which we will detail in the 
following. 
 



23 
 

Instance fields 
 
We have seen examples of variables several times, and variables will usually also be 
part of a class definition. However, variables in a class definition can have different 
purposes. Some variables will be used inside methods (we get to method definitions 
very soon), but other variables are used for representing the state of an object of the 
class. These variables are called instance fields. The word “instance” signifies that 
whenever a new object is created, this object will contain its own set of instance 
fields, that are independent of the instance fields in other objects. If you change the 
value of an instance field in one object, it will not effect the corresponding instance 
field in any other object. 
 
If we wish to add an instance field to the Human class, to hold the name of an indi-
vidual, it will look like this: 
 
public class Human 
{ 

private string _name;         
} 

 
This sort of looks like what we have seen before, with a few additions. The keyword 
private indicates that this instance field can not be accessed from the outside. That 
is, if you create a Human object, and try to get hold of the value of the instance field 
(or try to change it), the compiler will consider that code to be in error, and therefore 
uncompilable. Again, you may wonder why you would create an instance field and 
then hide it away; the main reason is that we want access to such an instance field to 
go through a so-called property. We have mentioned these properties in the previ-
ous chapter, and we shall see in a moment how to create a property. Also, we have 
prefixed the name of the instance field with an underscore (_). This has emerged as a 
standard for “branding” instance fields in a way that distinguishes them from plain 
variables. We adopt that standard as well, and encourage you to do so. 
 
If we wish to add more instance fields to our class, we can simply add them one after 
another (it is considered good form to define instance fields on separate lines): 
 
public class Human 
{ 

private string _name; 
private double _height; 
private double _weight; 

} 

 



24 
 

Properties 
 
In the chapter about usage of existing classes, we stated that it is usually possible to 
retrieve certain “properties” from a given object. One example was an object of the 
type Student, where we assumed that a property called Name was available: 
 

string name = firstStudent.Name; 

 
Such a property only becomes available, if the creator of the Student class has deci-
ded to include such a property in the definition of the class. Including a Name proper-
ty in the Human class also seems like a very natural thing. The initial code for creating 
such a property looks like this (the rest of the class definition is omitted): 
 

public string Name 
{ 

get { } 
set { } 

} 

 
If you add this code as-is to the Human class definition, Visual Studio will inform you 
that the code is invalid… Don’t worry; we will fix this in a moment. First, let’s take a 
step back and see how such a property can be used by someone who has created a 
Human object. 
 
Imagine that somebody has created a Human object, like so: 
 

Human firstHuman = new Human(); 

 
We also assume that the Name property is available for use, meaning that the below 
lines of code should be perfectly valid: 
 

firstHuman.Name = "Adam"; 
Console.WriteLine(firstHuman.Name); 

 
What happens in these two lines of code? It seems like the Name property is part of 
the state of any Human object. The type of that part of the state is string, and we can 
perform certain operations with the value of that part of the state. We can 
 

• Set the value to something we specify 

• Get the value out again, and e.g. print it. 
 



25 
 

These are two separate operations, but they involve the same part of the state. If we 
wish to enable these two operations, we must specify it in the definition of the Name 
property. This brings us back to the code from before: 
 

public string Name 
{ 

get { } 
set { } 

} 

 
What we now need to figure out is what statements we need to write, in order to en-
able the two operations. The statements needed to “get” the value should be written 
between the {} in the line with the get keyword, and likewise for set. Note that this is 
very similar to writing a function definition, with good reason. The get- and set-part 
of a property definition are actually just functions, even though they look a bit diffe-
rent than any function definitions we have previously seen. Imagine that we had two 
functions named get_Name and set_Name in the Human class definition, defined 
like this: 
 

string get_Name() { } 
void set_Name(string value) { } 

 
These definitions are not complete yet. The intention of get_Name seems to be to 
return the value of the name stored in the Human object on which the function is 
called. Where would we find this value? Well, the _name instance field seems to be a 
good candidate! Let’s go with that: 
 

string get_Name() { return _name; } 

 
What about set_Name? It seems the intention is to set a new value for name in the 
Human object on which the function is called. This new value is provided through the 
parameter named value. Where should we then store this value in the object? In the 
_name instance field! Let’s do that: 
 

void set_Name(string value) { _name = value; } 

 
Now we have a mechanism for setting a value, and retrieving it again. Is this better 
than just accessing the _name instance fields directly? Not really in this case. How-
ever, we have achieved two things: 
 



26 
 

1. Details about how the value is stored in the object are hidden from the client 
of the class 

2. We can add any logic we wish to the basic assignment and retrieval operations 
 
Why are these worthy achievements? W.r.t. the first point, suppose that we at some 
point discovered that the name value could be stored in a more efficient way (hard to 
imagine with a simple string, but please play along…). Since the client does not access 
the name value directly, we are free to change the way we store it internally, without 
affecting the client! This becomes a very important point when things get more com-
plicated. W.r.t. the second point, suppose that we – somewhat arbitrarily – defined 
that a name must be at least two characters long. We can actually enforce this rule 
by adding a bit to the definition of set_Name: 
 
    void set_Name(string value)  
    {  
        if (value.Length > 1)  
            _Name = value;  
    } 

 
We haven’t quite learned enough C# to fully understand this code, but the point is 
that we are able to “guard” such get/set operations in whatever way we find appro-
priate, and thereby taking ownership for enforcing such rules. This is much better 
than leaving it to the client to enforce such a rule. 
 
So, the rationale for defining properties with get/set operations that are actually 
functions is hopefully clear. We can then return to how this will actually look for a 
real property. We left off with this incomplete definition: 
 

public string Name 
{ 

get { } 
set { } 

} 

 
Now, remember that get {} is actually just a “shorthand” (such shorthands are often 
called syntactic sugar3) for string get_Name() {}. We can then simply move the code 
from above into the definition: 
 

get { return _name; } 

 

 
3 https://en.wikipedia.org/wiki/Syntactic_sugar 



27 
 

Likewise, set {} is a shorthand for void set_Name(string value), which gives us: 
 

set { _name = value; } 
 
The complete definition of the Name property then becomes: 
 

public string Name 
{ 

get { return _name;  } 
set { _name = value; } 

} 

 
Remember that for a property, the set operation is always called when an assign-
ment statement involving a property is performed, like: 
 

firstHuman.Name = "Adam"; 
 
value is then simply set to the value of the right-hand-side (be it a simple value or an 
expression). In this case, value will be set to “Adam”, meaning that the set operation 
will update the value of _name to “Adam”, and thereby changing the state of the 
object. For get and set operations in general, the rules of invocation are: 
 

• If a property appears on the left-hand-side of an assignment statement (i.e. we 
are assigning a new value to the property), the set operation is invoked. 

• In all other scenarios where a property is being used, the get operation is 
invoked. 

 
With all this in place, we could go ahead and extend the Human class definition fur-
ther, e.g. by adding Weight and Height properties in a very similar way. What about a 
BMI property (recall that BMI was defined as BMI = weight / height2)? How would we 
implement this property? First the skeleton code for a BMI property: 
 

public double BMI 
{ 

get { } 
set { } 

} 
 
First consider the get operation. Since the BMI is calculated as above, we can calcu-
late the value to return by using the current values of _weight and _height, as below: 
 



28 
 

public double BMI 
{ 

get { return _weight / (_height * _height); } 
set { } 

} 
 
The important point is that the value is now calculated; it is not just pulled out of an 
instance field. We could have chosen to create a _bmi instance field and store the 
value there (think about why this would be a bad idea), but we didn’t…but the client 
of the object doesn’t need to know this! All the client knows is that a BMI value can 
be retrieved from a Human object, but the client does not know anything about how 
the value is produced. It could be stored in an instance field, it could be calculated…it 
doesn’t matter. 
 
What about the set operation? Does it even make sense to have a set operation for 
the BMI? Not really… Since the BMI is calculated, it should not be allowed to set it 
“manually”, since that value may contradict the calculated value. Can we then pre-
vent statements like the below? 
 

firstHuman.BMI = 20.8; 

 
Yes, we can! We simply remove the set operation from the BMI property definition: 
 

public double BMI 
{ 

get { return _weight / (_height * _height); } 
} 

 
This turns the property into a “read-only” property; you can retrieve the value, but 
not change it yourself. This is a fairly common situation, and this is indeed the correct 
way to handle it – this is not a “hack” in any way. 
 
Auto-properties 
 
So, how often do we define properties in the “default” way like we did for Name, and 
how often do we need special handling like for BMI? It’s hard to say anything defi-
nite, but it’s very likely that you will often just need the “default” implementation; 
one instance field, and “default” implementations of both get and set. Since this is so 
common, there is also a “shorthand” for this called auto-properties.  
 



29 
 

The auto-property version of the Name property looks like this: 
 

public string Name 
{ 

get; 
set; 

} 

 
That’s it! You do not need to define a corresponding instance field yourself; this is 
generated automatically. Can you somehow get hold of this auto-generated instance 
field…? No, and you shouldn’t need to. If you have a reason to access the instance 
field directly, then you are in a case where auto-properties isn’t the correct solution. 
Since the definition becomes so simple, it is also common practice simply to put it on 
a single line: 
 

public string Name { get; set; } 

 
When seeing something like this, you might feel tempted to simply use a (public) 
instance field instead, since there seems to be very little gain using a property. Still, 
remember that using properties is generally a sound principle: we hide all details 
about how the value is stored and retrieved, and are thus free to change this later 
on, without affecting the client of the class! We might start out by implementing a 
property using this simple auto-property style, but we might later on switch to a 
more complex implementation, while retaining the “interface” to the class. Auto-
properties are just an implementational convenience, nothing more. 
 
Methods 
 
By now, you have hopefully recognized that properties and object state are closely 
related; if we wish to know – or change – part of the state of an object, we do so by 
using properties. But objects usually also have behavior. We can make the objects 
perform certain actions, that go beyond a simple state change. If we have an object 
representing a collection of students (this could be part of a school administration 
system), a useful action could be to ask the object to add an additional student to the 
collection (maybe in the form of a Student object). In code, it could look like: 
 

Student aStudent = new Student(); 
SchoolAdminSystem adminSystem = new SchoolAdminSystem(); 

 
// aStudent is updated with relevant data (code omitted…) 

 
adminSystem.AddStudent(aStudent); 

 



30 
 

The last line contains a call of a method named AddStudent, which hopefully does 
what we expect: add a new Student object to the collection of existing objects. In this 
way, we are invoking a behavior for the object, by calling a method. 
 
How do we then define such methods? A method is essentially a collection of state-
ments, that can be invoked by calling the method on a specific object. A method defi-
nition will always contain these elements: 
 

• An access specifier: We have seen before that certain parts of a class definition 
can be declared as being public or private. This goes for methods as well. 
Some methods should be available for clients of the class, and should then be 
marked as public. Other methods may be “helper methods”, that only exist for 
making the implementation of public methods easier; these methods should 
be marked as private. 

• A return type: We saw that the get operation in a property definition needs to 
specify the value it returns. Methods may also return values to the caller, and 
we need to specify what type (e.g. string, int or maybe a class type) this value 
will have.   

• A method name: Just as for e.g. variables, we need to give our method defini-
tion a name, so we can refer to it when we wish to call it. As mentioned before, 
the name should be as descriptive as possible, and be written in CamelCase 
with a capital first letter. 

• A list of parameters: We have already seen that some methods may require 
the caller to specify a list of arguments, in order to pass actual values to the 
method being called. In the method definition, a corresponding parameter list 
must be specified, including the type for each parameter. 

• A method body: “body” here means the C# statements inside the method defi-
nition. When the method is called, the statements will be executed. 

 
Let us see an example of a method definition. At this point, we only know a few 
rather simple C# statements, so we can only create very simple methods. A  - some-
what contrived – method on a Human class could be a method that returns whether 
or not this individual is higher than a given average: 
 
        public bool HigherThanAverage(double averageHeight) 
        { 
            bool isHigher = _height > averageHeight; 
            return isHigher; 
        } 

 



31 
 

If we dissect the definition according to the elements mentioned above, we get: 
 

• Access specifier: Is public, so an external client can call this method. 

• Return type: Is bool – we can also see that the expression (in this case just a 
variable) after the return keyword indeed has the type bool. 

• Method name: Is HigherThanAverage 

• List of parameters: One parameter named averageHeight, of type double. 

• Method body: The two lines of code between the { and the }. 
 
One additional element is worth mentioning here: The first line of the method body 
contains a variable declaration, as we have seen many times before. When a variable 
is declared inside a method body, it is a so-called local variable. You may recall that a 
class definition can contain instance fields, that look almost like local variables; they 
have a type and a name (instance fields also have an access specifier). 
 
Why do we distinguish between local variables and instance fields? An instance field 
is created when the object that encapsulates it is created, and only then. Likewise, it 
is destroyed when the object is destroyed. The lifespan of an instance field is there-
fore exactly the same as the lifespan of the encapsulating object. If a method call 
changes the value of an instance field, another method call will be able to access that 
instance field and retrieve the value. The value thus “endures” between method 
calls. This is not the case for local variables. A local variable is created when the 
method in which it is defined is called. Also – and that is the most important point – 
the local variable is destroyed again when the method call is finished. Local variables 
thus have a much shorter lifespan that instance fields, since they only exist during a 
method call; not before, and not after. 
 
The obvious consequence is that if you need to save a value inside an object across 
method calls, you will need to save it in an instance field… and saving something in an 
instance field is exactly to change the state of an object! Creating and changing the 
value of a local variable is not considered a state change, since these actions will not 
cause any “permanent” change in the state of the object. 
 
For further illustration, consider the below method for adding two given numbers 
and printing the result on the screen: 
 

public void AddAndPrintResult(int a, int b) 
{ 

int result = a + b; 
System.Console.WriteLine(result); 

} 



32 
 

Two points are of interest here: First, note that this method takes two parameters, 
which are specified in the parentheses just after the method name. Each parameter 
is specified by a type and a name, and parameters are separated by comma. Also, 
note the keyword void, that appears where we would expect a type specification. 
The type specification should be for the return type…but this method does not return 
anything! The keyword return is not present in the method body either. This is fine, 
but the C# syntax specifies that you must specify a type at this position in a method 
definition. Therefore, the keyword void simply means “no type”. The void type is 
used quite often, so it is important to know its meaning. 
 
With these final points, we are now capable of defining methods as part of a class 
definition. Once we learn about more advanced C# language constructions, we can 
create more complex methods with richer functionality. A couple of more general 
remarks about methods are in place, though: 
 

• When you create methods, you should also strive for clarity. If you are creating 
a public method with complex functionality, you may quickly end up with a 
method containing many lines of code. Even though the method might work as 
specified, it will then be a good idea to see if the method can be broken down 
into additional (probably private) methods, that can then be called from the 
public method. This should not change the functionality, but make the method 
easier to understand and maintain. 

• When you add methods to a class, the methods should be relevant for that 
class. There is nothing that prevents you from adding a Multiply method to a 
Human class, but that doesn’t seem like a functionality that naturally belongs 
to that class. Figuring out what methods that should be present in a class is 
strictly speaking a software design matter. 

 
 
Constructors 
 
During the discussion about how to use an existing class, we saw an example of how 
to create an object of a specific class: 
 

Human firstHuman = new Human(); 

 
We claimed that the statement on the right-hand-side will cause a new Human ob-
ject to be created, and that a piece of “initialization code” will be executed as well. 
The purpose of that code should be to ensure that the object is in a meaningful state 
from the moment it is created. 



33 
 

This “initialization code” is also written as part of the class definition, in the form of a 
so-called constructor. A constructor is also just a method, but with a special syntax 
and some limitations compared to ordinary methods. For our Human class example, 
the simplest possible constructor looks like this: 
 

public Human() 
{ 
} 

 
This is as simple as it gets. Compared to an ordinary method, we again see an access 
specifier as the first part. However, there does not seem to be a return type… That is 
the first important difference; you do not specify a return type for a constructor. 
Next, we see the word “Human”, i.e. exactly the same name as the class. This is also a 
defining characteristic for a constructor; it always has the exact same name as the 
class it is defined in. Next follows the parameter list. The list is empty in this example, 
but we are indeed allowed to specify parameters to a constructor, in the same way as 
for ordinary methods. Finally follows the constructor body, on which there are no 
restrictions either. 
 
The most important point to understand is that once the statement containing the 
new Human() part is executed, the code inside the constructor will be executed. In 
that sense, you can say that new Human() is a method call, that: 
 

1. Creates a new Human object 
2. Executes the code within the constructor’s body, on the newly created object 
3. Returns a reference to the Human object to the caller 

 
As said above, the caller would then expect the object to be ready to use, and thus be 
in a meaningful state from the start. If we assume that the Human class contains pro-
perties corresponding to the instance fields we defined earlier on: 
 

public class Human 
{ 

public string Name { get; set; } 
public double Height { get; set; } 
public double Weight { get; set; } 

} 

 
then it would seem that the simple constructor – which does nothing – is not good 
enough. What would the initial values of the three properties be? C# does set the 
initial value for e.g. an double to a well-defined value (0.0), and for a string to the 
empty string, but that is hardly meaningful either. What then? 



34 
 

  
One solution could be to set the values to some sort of “default” values, like: 
 

public Human() 
{ 

Name = "Adam"; 
Height = 180.0; 
Weight = 80.0; 

} 

 
That’s not really what we want either. The essence of the problem is that we should 
not be able to create a Human object, until we have enough information about it. We 
discussed a similar problem for the Student class; you should not be able to create an 
“empty” Student object, since it does not make sense in the real world. 
 
We can impose such a restriction by adding parameters to the constructor definition. 
If we define – and that should probably be a design decision – that you cannot create 
a new Human object without knowing the name, height and weight, you should then 
define the constructor as below: 
 

public Human(string name, double height, double weight) 
{ 

Name = name; 
Height = height; 
Weight = weight; 

} 
 
Note how handy it is that we defined that names for properties should always start 
with a capital letter, since we can then distinguish them from the constructor para-
meters. By adding these parameters, the previous simple statement new Human() 
becomes invalid and uncompilable. It now becomes mandatory for the caller to 
provide the information needed to create a meaningful Human object: 
 

Human firstHuman = new Human("Adam", 180.0, 80.0); 

 
This is a very sound principle: Define your constructors in a way that makes it impos-
sible to create an object in a meaningless state. 
 
Does the above then imply that the constructor should always have as many para-
meters as there are settable properties in the class, so we can properly initialize all of 
them? Not necessarily. Suppose that we extend the Human class definition with a 
property named Level (you could imagine that the Human class is part of a game 
project, using a typical game mechanic where you are able to “level up” a Human as 



35 
 

the game progresses). What would a proper initial value for Level be? If we imagine 
that the game allows you to customize your Human w.r.t. name, weight and height, 
but also restrict all Humans to start in Level 1, then it seems that Level should always 
be initialized to 1. If that is so, we don’t need to provide that value as a parameter to 
the constructor: 
 

public Human(string name, double height, double weight) 
{ 

Name = name; 
Height = height; 
Weight = weight; 
Level = 1; 

} 
 
This is a perfectly valid way to initialize Level, but there is in fact another way to 
achieve this. The Level property will look something like this: 
 

public int Level { get; set; } 

 
In order to always initialize the value of Level to 1, you can add this to the definition: 
 

public int Level { get; set; } = 1; 

 
and then omit the initialization in the constructor. Which option is best? They are – 
except for some rather technical nuances we cannot discuss at this point – equiva-
lent, so it’s most a matter of taste. Some prefer to have all initialization done inside 
the constructor, which is the style we will usually adhere to in these notes.  
 
These variations aside, the key point remains: the client of a class should only need to 
provide initial values for those properties that are individual for an object, like name, 
weight and height in the example. Fixed-value initialization is an internal matter. 
 
For completeness, it should be noted that you can actually define more than one 
constructor for a class. This could e.g. reflect a situation where you would prefer that 
certain information is available when an object is to be created, but you will also 
allow creation with less information. For a Student class, you could define one con-
structor that takes all relevant information (name, address, country, phone, CPR 
number, and so on), but maybe also allow a version that only requires name and CPR 
number. Again, such requirements should be resolved during design. 

  



36 
 

Class collaboration, and a bit about Abstraction 
 
Once we know how to create our own classes, we can start building more complex 
models, involving more than one class. We recommended earlier that you should 
break a complex method into a set of simpler methods, that can “collaborate” to 
implement complex functionality. Likewise, you should try to create simple classes, 
that are closely related to specific aspects of your model. Suppose we wish to create 
an application for simulating a car – this could perhaps be part of a racing game. We 
would probably create a Car class, and fill in functionality relating to various aspects 
of a real-life car. A real-life car is a very complex system, and you can perceive it as a 
set of sub-systems, that collaborate in a well-defined way. You could see the engine, 
the lighting system, the navigation system, etc.. as examples of such sub-systems. If 
we cram all the functionality into a single Car class, it will end up being very complex. 
It would be a better approach to create classes corresponding to the sub-systems, 
like an Engine class, a NavigationSystem class, and so on. The role of the Car class 
would then be to hold the sub-systems together, and coordinate various actions 
between the subsystems. In C# code, we could imagine that part of the Car class 
could look like this: 
 
public class Car 
{ 

private string _modelName; 
private Engine _theEngine; 
private NavigationSystem _theNavigationSystem; 
// other fields would probably follow... 
 
public Car(string modelName) 
{ 

_modelName = modelName; 
_theEngine = new Engine(); 
_theNavigationSystem = new NavigationSystem(); 
// (rest of constructor) 

} 
 
public void Start() 
{ 

_theEngine.Start(); 
_theNavigationSystem.Start(); 
// (rest of Start method) 

} 
 
// other methods would probably follow... 

} 

 



37 
 

First, note that we now have instance fields that are of a reference type. For instance, 
the field _theEngine is a reference to an Engine object. This is perfectly valid, and is a 
consequence of the notion of seeing a car being “composed” by sub-systems. When a 
Car object is created, we expect it to be in a meaningful state after creation, so it is 
quite natural that the Car constructor should ensure that a new Engine object and a 
new NavigationSystem is created. Likewise, the Start method “relays” the starting 
command to the subsystems, and the Car object thus acts as the coordinating entity. 
You can take this idea further, and imagine that Engine and NavigationSystem are 
themselves composed of sub-systems, until a point where the sub-systems become 
so simple that further decomposition is unnecessary. 
 
What we see here is also a first example of a very important idea in Object-Orienta-
tion: abstraction. We did intentionally not write “important idea in Object-Oriented 
programming”, since it is strictly speaking a design concept. However, modern soft-
ware development does not distinguish software design and software development 
as sharply as it was traditionally done, so we can discuss the concept here as well. 
 
Abstraction is the idea that you should be able to work with software development 
at various levels of “abstraction” or “complexity”. What does that mean? If you 
investigate how various car industry professionals work with the development of a 
real-life car, you will probably quickly realize that nobody knows all the details about 
the car… and that is a good thing! 
 
A systems engineer may have “sub-system communication and coordination” as his 
area of responsibility. He will need to figure out how the various sub-system need to 
work together, but he will not know – and will not need to know – the details about 
how e.g. the navigation system works internally. All he is interested in knowing is 
how that sub-system interacts with the outside world. Of course, that needs to be 
specified in sufficient detail. Once he knows that, he can use the sub-system as he 
sees fit, without knowing what goes on inside it. So, the systems engineer works at 
that particular level of abstraction. A navigation system engineer probably works at a 
lower level of abstraction – he needs to work with all the internal details of the navi-
gation system, but that system may itself rely on other, smaller sub-systems, and so 
on. As long as you know how to interact with a subsystem at your particular level of 
abstraction, you don’t need to know about internal details. 
 
You can hopefully see that this way of thinking fits very well to the main features of 
object-oriented programming; you can specify how an object presents itself to the 
outside world – i.e. how the outside world should interact with it – and then hide 
away the details of implementation inside the private sections of the object.  



38 
 

Static – no object needed 
 
Over the last pages, we have again and again insisted that you define methods in 
classes, and call methods on objects. This is a very clean distinction, but there are in 
fact situations where you don’t need objects in order to call methods. Suppose you 
have a class called SimpleMath, which contains simple methods for addition, sub-
traction and so on. The “header” of an Add method will probably look like: 
 

public int Add(int a, int b) 

 
So, the Add method takes two arguments a and b, and returns the sum. Very simple. 
So simple, that it is hard to see why we even need an object to call the method on… 
We said earlier that some methods may need arguments, in order to provide it with 
the information it needs to do its job. In this case, all the information needed is pro-
vided as arguments. If called on an object, the method would not change anything in 
the state of the object. In fact, there aren’t any good arguments for having to create 
a SimpleMath object, just to be able to call Add. Instead, the method can be declared 
as a static method: 
 

public static int Add(int a, int b) 
{ 

return (a + b); 
} 

 
We can now call the method like this: 
 

SimpleMath.Add(2, 6); 

 
We do not create a SimpleMath object, but simply call the method “on the class”. 
This may seem confusing, now that we have been accustomed to calling methods on 
objects, but it is an important feature to know. Consider this line of code: 
 

Console.WriteLine("WriteLine is a static method!"); 

 
This should be quite familiar by now, but…what is Console actually? Console is the 
name of a class, not an object! If you investigate the .NET Class Library further, you 
will find that static methods are quite common. The very useful Math class is filled 
with static methods. 
 



39 
 

You can apply the static keyword to all the elements of a class definition: instance 
fields, properties, and even on the class itself. If you define a class as being static, it 
becomes impossible to create an object of that class. Also, a static class can only 
contain static elements (how would you access a non-static element, if you cannot 
create an object…?). 
 
Having static elements in a non-static class is however possible, and quite common. A 
very common static element is a so-called constant. A constant is a variable that can-
not change its value. That sounds a bit contradictory, since you would expect a “vari-
able” to be able to change its value… However, you will often need to use some fixed 
value in your code, the classic example being the value of π (pi). That value is actually 
found in the Math class, named Math.PI. You can create a constant inside a class 
definition like this: 
 

public class CardDeck 
{ 

public const int CardsInDeck = 52; 
} 

 
Notice the keyword const – this defines the instance field to be a constant. We also 
need to specify the value of the constant as well. You might expect that you should 
also add the keyword static, in order to make the constant static. However, since 
constants are always considered to be static – since there will never be a reason to 
create more than one instance of a constant – you don’t need to specify it explicitly. 
 
For someone new to programming, it might be difficult to figure out when to declare 
a class element as being static. The question you should ask yourself is: “does this ele-
ment depend on the state of individual objects?”. If the answer to that question is no, 
you can declare that element as being a static element. It is in fact recommended 
that you do this! Declaring something as static is not “cheating” or a “hack”; it is a 
way to inform the client of the element that the client can use it without having to 
create an object first. This saves both time and code.  



40 
 

Exercises 
 

Exercise OOP.1.1 
 

Project MovieManagerV10 
 

Purpose Observe how to use an existing class. 
Implement simple use of an existing class. 
 

Description In this version of the movie manager application, a class named Movie 
has been added (in the file Movie.cs). It contains an absolute mini-
mum of information about a specific movie. The class is put to use in 
Program.cs, where some Movie objects are created and used. 
 

Steps 1. Load the project, and open Program.cs. You will see that some code is 
already present. See if you can figure out what goes on in each line of 
code. If you hover the mouse cursor over a specific element, you should 
see some useful information pop up. Make sure you understand where 

• Objects are created 

• Arguments to the constructors are specified 

• Properties are used 

• Methods are called 
2. Feel free to create additional Movie objects, and exercise them a bit (call 

methods, use properties, etc.) 
3. We can only change the value of NoOfViews by calling the Watch method. 

Consider why it would be a bad idea to allow a user of the class Movie to 
change the value of NoOfViews directly, e.g. like this:         
movieA.NoOfViews = movieA.NoOfViews + 1; 

 
  



41 
 

 

Exercise OOP.1.2 
 

Project BankV05 
 

Purpose Implement minor additions to an existing class.  
 

Description The project contains a minimal BankAccount class. The class is put to 
use in Program.cs, where a BankAccount object is created and used. 
 

Steps 1. Load the project, and take a look at the BankAccount class. Make sure you 
understand all the elements in the class definition. Then take a look at 
how the BankAccount class is used in Program.cs. 

2. We now want to add an extra property to the BankAccount class: the 
name of the account holder. Add this feature to the class. This will 
probably involve: 

a.  Adding a new instance field 
b.  Adding a property which uses the new instance field 
c.  Updating the constructor, such that the name of the account 

holder must be specified when a BankAccount object is created. 
3. Once the class has been updated, make sure to test the new feature by 

updating the code in Program.cs. More specifically, you should test that 
you must now specify a name when creating a BankAccount object, and 
that you can retrieve the name by using the property added in step 2. 

 

 
  



42 
 

 

Exercise OOP.1.3 
 

Project RolePlayV10 
 

Purpose Implement non-trivial additions to an existing class 
 

Description The project contains a Warrior class, which is initially very simple – it 
only contains a Name property. We now need to extend the class with 
an additional feature. 
 

Steps 1. Start out by taking a look at the Warrior class. Make sure you understand 
all the elements in the class definition. Specifically, make sure you can 
identify: 

a.  An instance field 
b.  A property 
c.  The constructor 

2. Next, take a look at how the Warrior class is used in Program.cs. This is a 
very small test of the class. 

3. We must now extend the Warrior class with a “level” feature. The require-
ments for this feature are: 

a.  All warriors start at level 1. 
b.  The level can be retrieved freely, but not changed freely. 
c.  It must be possible to increment the level, i.e. increase the value 

of the level by 1. 
4. Implement this feature in the Warrior class. You will need to consider if 

a.  An additional instance field is needed (Hint: we need to store the 
current level of a Warrior somewhere) 

b.  An additional property is needed (if so, do we need both the get 
and the set part? Hint: We only require that the value of the level 
can be retrieved through the property, not changed) 

c.  The constructor should be updated (Hint: The constructor should 
initialize all instance fields with a well-defined value. What would 
that value be for level, given requirement 3a?). 

d.  A method for incrementing the level is needed (Hint: the level 
should always just be increased by 1). 

5. Test the updated Warrior class, by adding some code in Program.cs. 
 

  



43 
 

 

Exercise OOP.1.4 
 

Project RolePlayV11 
 

Purpose Implement non-trivial additions to an existing class 
 

Description The project contains a Warrior class, including the functionality 
described in the previous exercise (a “level” feature). 
 

Steps 1. We must now extend the class with a “hit points” feature. Details of this 
feature are: 

a.  Hit points are set individually when a warrior is created. 
b.  Hit points can be retrieved freely, but not changed freely. 
c.  It must be possible to decrease hit points by a specified amount. 

This corresponds to the warrior being damaged by someone 
2. Implement this feature in the Warrior class. You will need to consider if 

a.  An additional instance field is needed (Hint: we need to store the 
current hit points of a Warrior somewhere) 

b.  An additional property is needed (if so, do we need both the get 
and the set part? Hint: We only require that the value of the hit 
points can be retrieved, not changed) 

c.  The constructor should be updated (Hint: The constructor should 
initialize all instance fields with a well-defined value. What would 
that value be for hit points, given requirement 1a? How can we 
provide this value to the constructor? Extra hint: How is the value 
of the warrior’s name provided to the constructor?). 

d.  A method for decreasing the hit points is needed (Hint: how can 
the specific amount to decrease the hit points with be provided to 
the method?). 

3. Implement a property called Dead, which returns a boolean value. The 
property should return true if hit points are equal to or below zero (Hint: 
we only need to include the get part of this new property). 

4. Test the updated Warrior class, by adding some code in Program.cs. 
5. A Warrior should not only receive damage, but also deal damage! 

Implement a method DealDamage, with these requirements: 
a. Returns an integer value 
b. Does not take any parameters 
c. The returned integer value should be a random number between 

10 and 30 (Hint: Figure out how the Random class from the .NET 
class library works). 

6. See if you can make two warriors battle against each other, to the death! 

 

  



44 
 

 

Exercise OOP.1.5 
 

Project ClockV10 
 

Purpose Implement a class from scratch, including use of the class 
 

Description This project contains an empty class definition Clock. Your job is to 
implement the class Clock, given the below requirements: 

1. The clock should be able to display (i.e. print on the screen) 
hours and minutes. 

2. The clock should use the 24-hour system. 
3. It must be possible to set the clock to a specific time. 
4. It must be possible to retrieve the current time from the clock. 
5. It must be possible to advance the clock by a single minute. 

 
NB! To avoid confusion: the class should only be able to “simulate” a 
clock, i.e. it should not in any way contain code that retrieves the real-
world clock from the computer. A clock will only “tick” when you call a 
method which changes the time, as stated in requirement 5). 
 

Steps 1. Implement requirements 1-4. This will involve figuring out what instance 
fields, constructor, properties and methods you need for this. Remember 
to include code in Program.cs for testing the class. 

2. Implement requirement 5. In this case, it becomes quite important to 
choose relevant test cases! Note that you may need to rethink how you 
represent time in the Clock class (Hint: maybe a single instance field is 
enough…?).  

 

 
  



45 
 

 

Exercise OOP.1.6 
 

Project DiceGame 
 

Purpose Work with a project containing collaborating classes 
 

Description This project contains three classes: RandomNumberGenerator, Die and 
DiceCup.  

• The RandomNumberGenerator class contains code which can 
generate random numbers within a given interval. The class is 
already completed, and we will not be concerned with the details 
of this class. 

• The Die class represents a 6-sided die, and is already completed.  

• The DiceCup class needs a bit of work to be complete. The Dice-
Cup class uses the Die class. 

 

Steps 1. Take a look at the Die class. It is complete, and fairly simple. Note how the 
Die class uses the RandomNumberGenerator class. 

2. Open the DiceCup class. Note how the class contains two instance fields of 
type Die. Also note the constructor – what happens there? 

3. The DiceCup class is not complete. Implement the Shake method and the 
TotalValue property, as specified in the comments in the code. Test that 
your code works as expected, by creating and using a DiceCup object in 
Program.cs. 

4. How much would we need to change in DiceCup in order to have a dice cup 
with three dice? 

5. When we create a DiceCup object, we would also like to be able to specify 
the number of sides the dice should have. Implement the changes in Die 
and DiceCup needed to enable this feature. 

 

  



46 
 

 

Exercise OOP.1.7 
 

Project RolePlayV12 
 

Purpose Work with a project containing collaborating classes.  
Reflect over class responsibilities. 
 

Description The project contains two classes: Warrior and Sword. The Sword class 
is initially not used for anything. 
 

Steps 1. Take a look at the Warrior class. It is very similar to what we have seen in 
the previous RolePlayV… projects. Here, we focus in particular on the me-
thod DealDamage. What elements in the Warrior class definition (instance 
fields, properties, etc.) are needed in order to implement DealDamage? 

2. The DealDamage method contains the logic for calculating the damage a 
specific Warrior object deals. We would like to move this logic to another 
class; the Sword class. Take a look at the Sword class, and make sure you 
understand how it works. 

3. The next step is to connect the two classes. Do this by adding an instance 
field of type Sword to the Warrior class. The instance field should be 
initialized by an additional parameter (of type Sword) to the constructor 
(why is this a better solution than just creating a new Sword object directly 
in the Warrior constructor?). 

4. Now that a Warrior object references a Sword object, the DealDamage 
method should be modified. Modify the method, simply by letting it call the 
DealDamage method on the Sword object. 

5. When the code for DealDamage has been modified, we can remove several 
instance fields from the Warrior class. Figure out which instance fields we 
don’t need anymore, and remove them. 

6. The code in Program.cs contains a small test. This code should also be 
modified, such that each Warrior object is provided a Sword object at crea-
tion. Run the test, to confirm that the Warrior objects are still capable of 
dealing damage. 

7. Which class now contains the logic for specific damage calculation? Why is 
this a better division of responsibilities than before? 

8. If you have time left, you could update the Warrior class further: 
a) Make it possible to use two swords. 
b) Make it possible to change a sword after creation. 
c) Add a Warrior-specific damage factor, such that the damage generated 

by the sword is multiplied with this factor. This could e.g. represent that 
the warrior is stronger/weaker than average.  

 

  



47 
 

 

Exercise OOP.1.8 
 

Project StockPortfolio 
 

Purpose Work with a project containing collaborating classes.  
Reflect over class responsibilities. 
 

Description The project contains three classes: Stock, Portfolio and StockMarket. 
Together, they form a very simple simulation of a stock market, and 
how it influences a portfolio of stocks. Further details about each class 
is provided as comments in the code. 
 

Steps 1. Take a look at the Stock class. The class is completed, and you need not add 
any code to it. Make sure you understand the meaning of the data stored in 
the Stock class. 

2. Take a first look at the Portfolio class. The class is not complete yet, since 
the property TotalEarningsPercentage and the method UpdateCurrent-
Prices are not implemented yet. Still, it should be possible (e.g. by reading 
the comments) to understand what data the class contains, and what is 
intended with the methods and properties. Make sure you also understand 
how the Portfolio class and the Stock class are related. 

3. Take a look at the StockMarket class. The class is completed, and you need 
not add any code to it. Make sure you understand how the class is intended 
to be used. Make sure you also understand how the StockMarket class and 
the Portfolio class are related. 

4. Take a look at the code in Program.cs, where the StockMarket class is used. 
If you run the application now, it will always report the earnings to be 0.0 %, 
since the Portfolio class is incomplete. 

5. Now return to the Portfolio class, and implement the property Total-
EarningsPercentage and the method UpdateCurrentPrices, as described in 
the comments. A correct implementation will typically report earnings of a 
few percent. 

6. Once the application works as intended, you can reflect a bit over the 
structure of the application. See if you can answer these questions: 

a. What class holds information about stock prices? 
b. What class decides how stock prices are changed? 
c. What class decides what stocks we have in the portfolio? 
d. If we wanted more than three stocks in the portfolio, where would 

we need to change the code? 
e. Could some parts of the code become simpler, if additional methods 

or properties were added to some of the classes? 
 

  



48 
 

 

Exercise OOP.1.9 
 

Project StaticExamples 
 

Purpose Defining and using static methods and instance fields. 
 

Description The project contains the class ListMethods, which defines two 
methods FindSmallestNumber and FindAverage. The names should 
hopefully indicate what the methods do. Code that tests the class is 
included in Program.cs. The class is tested in the traditional way; 
create an object, and call methods on the object. 
 

Steps 1. Change the methods in the ListMethods class into static methods, by 
adding the keyword static to the method definitions. 

2. Modify the code in Program.cs, such that it uses the methods in 
ListMethods as static methods. The output of running the application 
should of course be as before. 

3. The project also contains a simple class Car (see the code). We would now 
like to track how the class is used. More specifically, we wish to track the 
number of 

a.  Car objects that have been created 
b.  Uses of the property LicensePlate 
c.  Uses of the property Price 

4. Add static instance fields to the Car class, to enable the tracking described 
above. Increment the value of each variable at the appropriate places in 
the class. 

5. Add a static method that can print out the values of the static instance 
fields. It could be called PrintUsageStatistics. 

6. Test that your additions work, by including some test code in Program.cs. 
Create and use some Car objects, and finally call the static method created 
in step 5) to observe the Car usage statistics. 

 
 
 


