

Object-Oriented Pro-
gramming with C#
Object-Oriented Programming, Part II

By Per Laursen
09-08-2022

1

INTRODUCTION ... 3

The Has-a relationship (Composition) .. 3

The Is-a relationship (Inheritance) .. 3

Next-level parameterization ... 4

INHERITANCE ... 5

The protected access level .. 5

Constructors in derived classes ... 6

Overriding methods .. 7

Polymorphic behavior ... 9

Calling base class methods ... 11

Abstract methods (and classes) .. 12

Interfaces .. 13

The Object class .. 15

EXCEPTIONS ... 16

Throwing and catching .. 17

Rethrowing an exception .. 19

Exceptions summary ... 20

GENERICS – TYPES AS PARAMETERS .. 21

Shortcomings of inheritance ... 21

Using types as parameters .. 23

Type constraints .. 25

Type parameter variance .. 27

The IComparable<T> and IComparer<T> interfaces ... 31

Generic methods ... 34

FUNCTIONS AS PARAMETERS .. 36

A first attempt at function parameterization ... 36

2

Lambda expressions .. 39

Delegates .. 42

Events .. 44

EXERCISES .. 47

OOP.2.1 ... 47

OOP.2.2 ... 48

OOP.2.3 ... 49

OOP.2.4 ... 50

OOP.2.5 ... 51

OOP.2.6 ... 52

OOP.2.7 ... 53

OOP.2.8 ... 54

OOP.2.9 ... 55

OOP.2.10 ... 56

OOP.2.11 ... 57

OOP.2.12 ... 58

OOP.2.13 ... 59

OOP.2.14 ... 60

OOP.2.15 ... 61

3

Introduction

Once we get to the point where our models consist of several classes, there will inevi-
tably be some kind of relationship between the classes. We have already seen exam-
ples of classes that themselves refer to other classes: A Car class may have a relation
to a Wheel class, an Employee class may have a relation to a Teacher class, and so
on. We usually make a distinction between two fundamental kinds of class relation-
ships: the has-a relationship, and the is-a relationship.

The Has-a relationship (Composition)

The Car-Wheel example above is a classic example of a has-a relationship. A Car is
probably a (model of a) quite complex system, so it will make perfect sense to divide
the system into a number of smaller sub-systems, each represented by a class. The
Car class will thus be “composed” by several sub-classes; this sort of relationship is
therefore denoted composition (or aggregation, depending on how strong the rela-
tion between the classes is). In a Car class definition, the relation to the other classes
will be implemented by a number of instance fields, which will have the type of the
classes representing the smaller systems, like

public class Car
{

private Wheel[] wheels;

public Car()
{

wheels = new Wheel[4];
// (rest of Car constructor)

}
}

We have seen similar examples before, and there is as such not that much more to
explain about this relationship. The higher-level classes will use the lower level-
classes to implement their own functionality, by using properties, calling methods,
etc.. Still, the fact that classes can make use of other classes enables us to construct
complex systems of collaborating classes.

The Is-a relationship (Inheritance)

A different kind of relationship can emerge as a result of discovering similarities be-
tween classes. Imagine we are working with a system for school administration. At
some point, we see that we have a class Teacher, and another class Secretary. Upon

4

further examination, we also see that the two classes have a lot in common. They
probably both have properties like Name, Address, Salary, etc.. In accordance with
the DRY principle, this is a situation we should do something about. But what? Should
we merge the two classes into one larger class, that can accommodate both teachers
and secretaries? That is not a good solution, since classes should be focused on a
single responsibility. A different approach is to move the common parts of the two
classes into a new class, and only retain the truly teacher-specific and secretary-spe-
cific parts in the original classes. The common class could be called Employee, and
should only contain those parts common for all types of employees.

This “decomposition” of the original classes has at least brought us in line with the
DRY principle, since no code is present twice anymore. Still, we need to have classes
that can fully represent a teacher and a secretary, respectively. Could we then make
these classes refer to the new Employee class through composition? That is indeed a
possible solution, but it would be a somewhat convoluted version of a has-a relation-
ship: A Teacher has-a Employee… This sounds much more like an is-a relationship: A
Teacher is-a Employee. An is-a relationship is implemented by using inheritance.

Next-level parameterization

An ongoing theme in our progression is the idea of parameterization. Whenever we
see an opportunity to convert a hard-coded element in a method or class into a para-
meter, we should seize it. Through parameterization, we enable the client (i.e. a pro-
grammer using our method or class) to choose a specific value (to be understood in a
very general sense) for the parameter, instead of locking that value inside our code.
As we will see below, we can take this idea even further, when we start to consider
types and even code itself as potential candidates for parameterization.

5

Inheritance

The two classes that are part of an is-a relationship each play a different role. One
class is more general, while the other is more specific. In the example, the Employee
class is general, while the Teacher class is more specific. By “more specific”, we mean
that the Teacher class should be everything that the Employee class is, plus a bit
extra (the parts that are specific for a teacher). We achieve this by using inheritance.
In C#, inheritance is syntactically quite simple to express. If we want the Teacher
class to “inherit” from the Employee class, it will look like:

public class Teacher : Employee
{

// Teacher-specific parts
}

This reads “class Teacher inherits from class Employee”. In this way, a Teacher object
will expose all the public properties and methods that are defined in the Employee
class, plus its own public properties and methods. To the outside world, a Teacher
object thus appears exactly like before the “decomposition”, while we have achieved
our goal of not repeating code in classes.

In more general terms, we refer to the class from which someone inherits as the base
class, while the class that inherits (from the base class) is called the derived class.
Another terminology is superclass (the base class) and subclass (the derived class).

The protected access level

We mentioned above that the derived class will expose all public parts of the base
class, which implies that the derived class can also make use of these properties and
methods inside its own properties and methods. But what about elements marked
private in the base class? A derived class can not access these elements, so private
really means private! This might seem overly strict, since we could easily imagine that
a derived class would need access to certain parts in the base class, that are not avail-
able to the outside world. For this reason, there is a third access specifier named
protected. An element in the base class marked as protected can indeed be accessed
by a derived class, but not by an outside client.

Should we then preferably mark all elements in a class as protected rather than pri-
vate, to accommodate any class that wants to inherit from the class? No. We should
still be careful about what we expose, even to a derived class. If we allow a derived
class direct access to all elements in the base class, it may short-circuit all sorts of

6

validations, etc. that have been put in place in the base class. Also, the derived class
might become too dependent on the internal structure in the base class, meaning
that it can become difficult to change this structure if needed. We are not saying that
you should never use the protected access level, just that you should consider the
potential consequences very carefully first.

Constructors in derived classes

Even though inheritance in itself is very simple with regards to syntax, there are a
number of non-trivial aspects you need to be able to consider. The first arises with
regards to constructors. Imagine that we found that our Employee class will need a
constructor with two parameters:

public class Employee
{

public Employee(string name, string address)
{

// (rest of Employee constructor)
}

}

Also, we found that the derived class Teacher (derived from Employee) only needs
one parameter in its own constructor:

public class Teacher : Employee
{

public Teacher(string mainSubject)
{

// (rest of Teacher constructor)
}

}

This all looks nice here in print, but in Visual Studio, the code above will produce an
error. Visual Studio will complain that “Base class Employee does not contain a para-
meterless constructor..”. The problem is: If you derive from a class with a parame-
terized constructor, you need to explicitly call this constructor when calling the con-
structor for the derived class, providing it with the arguments it needs. Syntactically,
it will look like this:

7

public class Teacher : Employee
{

public Teacher(string mainSubject)
 : base(name, address)
{

// (rest of Teacher constructor)
}

}

Note the keyword base (preceded by a colon); this is the call to the base class con-
structor. In the code above, we are still not done. The parameters name and address
are in red, because they are not defined anywhere… Where should they come from?
The most obvious solution is that they must also be provided as part of the parame-
ter list for the constructor of the derived class:

public class Teacher : Employee
{

public string MainSubject { get; set; }

public Teacher(string name, string address, string mainSubject)
 : base(name, address)
{

MainSubject = mainSubject;
}

}

We have here assumed that Teacher contains a property MainSubject. This is a very
common derived class constructor: the parts belonging to the base class are used for
calling the base class constructor, while the parts belonging to the derived class are
saved in the properties (instance fields) of the derived class itself.

Overriding methods

The inheritance mechanism described so far is actually sufficient in many scenarios.
The parts defined in the base class and derived class will co-exist peacefully in objects
of the derived class type, and an external user of the class will not really notice that
inheritance is in play. It is however possible to use inheritance for more refined pur-
poses, in particular to achieve so-called polymorphic behavior, which we describe in
some detail later. A prerequisite for polymorphic behavior is the ability to “override”
methods defined in the base class.

Suppose that the Employee class from before has a CalculateSalary method, which
has a generic implementation sufficient for most employees. However, it turns out
that salary calculation for a teacher is more complex. We must therefore implement

8

a different way of calculating salary in the Teacher class. The straightforward way to
do this would be to define a new method in Teacher called CalculateTeacherSalary,
since we cannot call it CalculateSalary (as it would “collide” with the name for the
method in the base class). This could be a feasible solution in many scenarios, but it is
in conflict with the polymorphic behavior mentioned before.

For this reason – which will become clearer soon – we need to be able to implement
a method called CalculateSalary in the Teacher class, containing the teacher-specific
logic for calculating salary. This method should “override” the implementation of
CalculateSalary in the base class, such that if you call CalculateSalary on an object of
type Teacher, the teacher-specific salary calculation is executed. Is this different from
before? Again, if you know you are dealing with a Teacher object, you might as well
call a method called CalculateTeacherSalary? One of the main points of polymorphic
behavior is however that you can call CalculateSalary on an object that seems like an
Employee object, but really is a Teacher object, and still have the teacher-specific
version of CalculateSalary executed! That is essentially what polymorphic behavior is.

In order to achieve this, we must however state our intention very explicitly in C#.
We need to state two things:

1. In the base class, we must explicitly mark any method that may be overrided in
a derived class.

2. In the derived class, we must explicitly mark any method that is overriding a
corresponding method in the base class.

By “corresponding” we mean a method with exactly the same signature, i.e. same
name, return type and parameter list. If just one of these don’t match, we are not
overriding a base class method. How does this look with regards to C# syntax? In the
base class, we can state that a method may be overrided in a derived class by adding
the virtual keyword:

public class Employee
{

// (rest of Employee class definition)

public virtual int CalculateSalary()
{

// Generic salary calculation
}

}

9

Note that we only state that the method may be overrided; the derived class has no
obligation to do so. If the derived class chooses to do so, it states this intention by
adding the override keyword in its own definition of the method:

public class Teacher : Employee
{

// (rest of Teacher class definition)

public override int CalculateSalary()
{

// Teacher-specific salary calculation
}

}

With this setup in place, we can now achieve this enigmatic “polymorphic behavior”.
So, what is it?
Polymorphic behavior

When we are using classes related by inheritance, we can suddenly loosen up one of
our most fundamental assumptions: When you create a variable and assign a value to
it, the variable and the value must have the same type. We have seen this almost
from the beginning:

int age = 23;

Teacher theTeacher = new Teacher("Per", "Home", "Programming");

However, if Teacher inherits from Employee, the below code is also valid:

Employee theEmployee = new Teacher("Ole", "Away", "Design");

The variable has type Employee, but the value has type Teacher... but since Teacher
is-a Employee (that’s what inheritance expresses), the above is also valid. But is it
also useful? On its own, not so much. We have in fact restricted ourselves a bit in this
way. Suppose the Teacher class has a property MainSubject. Consider then the two
lines of code below:

Console.WriteLine(theTeacher.MainSubject); // OK
Console.WriteLine(theEmployee.MainSubject); // ERROR!

We can only use the MainSubject property on the variable of type Teacher, not on
the variable of type Employee. This makes good sense, since that property is indeed
teacher-specific. Now consider the below code:

10

Console.WriteLine(theTeacher.CalculateSalary()); // OK
Console.WriteLine(theEmployee.CalculateSalary()); // OK

This also makes sense, since both classes now have an implementation of Calculate-
Salary. The big question is now:

What implementation of CalculateSalary will be called in each case?

The first case is probably most obvious; the variable has type Teacher, so the imple-
mentation in Teacher should be called. That is indeed true. In the second case, it is
still the implementation in Teacher that gets called! This seems surprising, since we
make the call on a variable of type Employee, and Employee has its own implemen-
tation of CalculateSalary. However, the C# compiler has noticed our intention of
overriding the method in the derived class, and will therefore call the implementa-
tion in the derived class on any object of that type, even if the object is referred to by
a variable of the base type! That is polymorphic behavior.

It is understandable if you still cannot appreciate why this is such a useful construct.
Suppose we have a more complex system with many types of employees – all inherit-
ing from Employee – where some choose to override CalculateSalary, while other
just go with the generic implementation in the base class. Suppose also that part of
the system deals with processing salaries for all employees. We could then imagine
functionality like “for all employees, calculate the salary and print a salary specifica-
tion”. In other words, we need to iterate through all employee objects, and invoke
calls to CalculateSalary on each object. If we had to do this without using inheritance
and polymorphic behavior, we would have to maintain a list for each type of em-
ployee, in order to call the correct implementation of CalculateSalary, like

List<Teacher> allTeachers= new List<Teacher>();
allTeachers.Add(new Teacher("Hans", "Home", "English"));

List<Secretary> allSecretaries = new List<Secretary>();
allSecretaries.Add(new Secretary("Leon", "Office", "Law"));
// ..and so on

foreach (Teacher t in allTeachers)
{

t.CalculateSalary(); // Teacher-specific salary calculation
}

foreach (Secretary s in allSecretaries)
{

 s.CalculateSalary(); // Secretary-specific salary calculation
}
// ..and so on

11

This is definitely an implementation and maintenance nightmare. With inheritance
and polymorphic behavior, we can however achieve our goal with just one list:

List<Employee> allEmployees = new List<Employee>();
allEmployees.Add(new Teacher("Per", "Home", "Programming"));
allEmployees.Add(new Secretary("James", "Office", "Marketing"));

foreach (Employee e in allEmployees)
{

e.CalculateSalary(); // Calls the correct implementation!
}

Through polymorphic behavior, we will always call the correct implementation of Cal-
culateSalary, be it the generic or specific version. The above loop will not even need
to be updated, if we later on add additional employee types, as long as they inherit
from Employee. This enables much more clean and generic programming, and is defi-
nitely yet another tool for adhering to the DRY principle.

Calling base class methods

When we override methods, we often wish to replace the base class method imple-
mentation completely. However, there are also scenarios where we wish to extend
the base class implementation. That is, we still want the code in the base class me-
thod to be executed, but we want to do something additional in the derived class.
This could very well be the case for salary calculation: some generic parts of the cal-
culation are done in the base class, while some more specific parts are done in the
derived class. The two parts are then combined in the derived method. In the derived
class, we can achieve this using the following syntax:

public override int CalculateSalary()
{

return base.CalculateSalary() + payGrade*500;
}

Again, the keyword base is used to refer to a base class implementation. The specific
way to combine the result of calling the base class implementation and the result of
the derived class implementation will of course vary from case to case.

12

Abstract methods (and classes)

One of our assumptions in the above example was that some sort of common salary
calculation logic exists, that can be used if no extra salary calculation logic applies for
a specific kind of employee. What if the salary calculation logic is so diverse that no
common logic exists? What will the implementation of CalculateSalary in Employee
then look like? Maybe this:

public virtual int CalculateSalary()
{

return 0;
}

This could be the case, maybe with the argument “Well, we have to put something,
right?”. That is however not a valid argument. In general, we often face this situation:

• All classes inheriting from a base class B should implement a method M

• The is no meaningful implementation of M in B itself

First of all, what is the problem with the not-so-meaningful implementation of Calcu-
lateSalary above? We will override the method in all derived classes anyway, yes?
True, if we remember to do it! There will be nothing alerting us that we have forgot-
ten to override it for a new derived class, except that some employee might see a
zero on his salary specification… It would be much better if we could make it manda-
tory for all classes inheriting from Employee to implement CalculateSalary, but with-
out having a meaningless default implementation in Employee. We can achieve this
by making the CalculateSalary method abstract.

An abstract method is a method without a body… that is, we only specify the method
signature in the class definition:

public abstract class Employee
{

public abstract int CalculateSalary();

// (rest of Employee class)

}

Notice the semi-colon at the end. We are really done with what we have to say about
this method in the Employee class. We only specify its signature, nothing more. If a
class inherits from Employee, it will now be required to implement CalculateSalary.

13

Declaring an abstract method in a class has an additional consequence. Consider the
below (invalid) code

Employee e = new Employee("Vivian","Home"); // ERROR!
e.CalculateSalary(); // What should happen here?

What should indeed happen in the second line? It’s meaningless, since there is no im-
plementation of CalculateSalary to call. In general, any class that contains an abstract
method will itself need to be marked as abstract (as Employee is above), implying
that you can not create an object of that type! However, you can still have a variable
of that type, so the ability for polymorphic behavior is preserved.

With this in place, we can sum up the difference between a virtual method and an
abstract method:

• Virtual method: Has an implementation in the base class, can be overridden in
a derived class. Use when a meaningful implementation of the method can be
provided in the base class

• Abstract method: Does not have an implementation in the base class, must be
overridden in a derived class. Use when no meaningful implementation of the
method can be provided in the base class

Interfaces

The concept of defining abstract methods in a class can be taken to the extreme; a
class that only contains abstract methods. This is actually a very useful idea, and has
even been given its own name in Object-Oriented programming: an interface.

An interface can be seen as the absolutely minimal specification of a class. Imagine
somebody interested in some particular functionality, for instance a class capable of
drawing geometric shapes. How can he state his requirements in a very precise way,
but without any assumption about specific implementation details? In terms of an
interface definition!

An interface definition for a (very simple) geometry drawing system could be speci-
fied in C# as:

14

public interface IGeometryDraw
{

void DrawCircle(double x, double y, double radius);
void DrawLine(double x1, double y1, double x2, double y2);
void DrawRectangle(double x1, double y1, double x2, double y2);

}

There are several things to take note of here:

• The keyword interface is used instead of class

• The interface name starts with an I – this is a naming convention

• There is no access specifier – all methods are per definition public

• There is no constructor

• All methods are by definition abstract

Somebody interested in obtaining this functionality could simply state it in terms of
this interface definition, alongside a specification of what an implementation of the
interface is supposed to do, from an external perspective. It will of course not make
sense to implement the DrawCircle method in a way that draws a square, so some
sort of requirement specification or “contract” is needed. But apart from that, there
is no need for additional information. A programmer could then go back and create a
class that implements the interface:

public class GeometryDrawV10 : IGeometryDraw
{

public void DrawCircle(double x, double y, double radius)
{

// (rest of DrawCircle)
}

// (rest of GeometryDrawV10)

}

The syntax for implementing an interface is identical to the syntax for inheritance in
general. One important difference is however that a class can “inherit” from (i.e.
implement) multiple interface, but can only inherit from a single non-interface class.
The reasons for this limitation are a bit technical, and beyond the scope of this text.

If you take a tour through parts of the .NET class library, you will see that interfaces
are used quite heavily. Use of interfaces is a very strong mechanism for making
couplings between classes as weak as possible, since they are a specification of the
absolute minimum you need to know about a class in order to use it. We will use
interfaces quite often in the rest of these notes.

15

The Object class

We conclude this section on inheritance by a small revelation – we have been using
inheritance all along. All C# classes tacitly inherit from a “universal” base class named
Object. This base class has seven methods:

• GetType

• Equals

• GetHashCode

• ToString

• Finalize

• MemberwiseClone

• ReferenceEquals

Some of these methods (Equals, GetHashCode and ToString) can be overrided in a
class definition, if you want your class to have certain abilities. A particularly interest-
ing method is the ToString method. As we have seen many times before, we can put
anything into a Console.WriteLine method call; the method will then try to print out
the argument. This works well for simple types like e.g. int, where the value is printed
as expected. However, if we try to do something like this:

Console.WriteLine(theTeacher);

we will get something like MyNamespace.Teacher printed on the screen. What hap-
pens is that the method tries to print the string representation of the argument,
more specifically by calling the ToString method – which all classes implement due to
the inheritance from Object – and print the return value. What we see is the base
class implementation of ToString. If we want a more useful result, we can override
the ToString method in the Teacher class:

public override string ToString()
{

return Name + " teaches " + MainSubject;
}

Now we will see a printout like e.g. “John teaches Design”, whenever the program
tries to print a Teacher object.Some of the remaining Object methods can also be
overrided for more or less exotic purposes; seek up additional information online
about this, if you find that you need to do so.

16

Exceptions

So far, we have given very little consideration to how to handle error situations.
Handling error situations is usually a pretty significant issue in software development,
so we cannot ignore it; we need to know about tools and strategies for managing it.

So, what can go wrong? Below are just a few of the error situations we can imagine
for a simple value:

• Value is correct type-wise, but is outside the range of meaningful values
(example: A test score is supposed to be between 0 and 100, but an int can
represent many other values, like e.g. -27, 22987).

• Value is used for indexing an array – only values from 0 (zero) up to (Length - 1)
are meaningful. Other values will produce an error.

• A string does not follow a given syntax (e.g. for a license plate).

• A variable that is supposed to refer to an object has the value null instead.

The proper action of the application in the above cases will be situation-dependent.
The application may halt, show an error message, silently handle the error, fall back
to a default value, etc. In any case, we should be prepared for handling all possible
error situations in a graceful manner. Simply shutting down the application is usually
not an acceptable option.

Management of error situations can in general be divided into four phases:

1. Detection – realizing that an error situation has occurred
2. Signaling – making the surrounding code aware that an error has been

detected
3. Capturing – taking responsibility for handling the error
4. Handling – actually performing the error handling actions

The actions corresponding to these phases can be distributed in the code. This may
imply that the part of the code detecting the error does not know how to handle the
error! Information about the error must then somehow be propagated to the error
handling code. One way of doing this could be to use return values. A method could
return some sort of error code or object as its return value, which the caller could
then act upon. This strategy does however quickly turn out to become very compli-
cated, so we usually resort to a different mechanism: exceptions.

17

Throwing and catching

Exceptions are by themselves just a set of classes, that all inherit from the .NET
library class Exception. If you need to use an exception object, you create it using
new, just as for any other object. The distinctive feature for exceptions is that you
can “throw” and “catch” exception objects.

If an error situation – or “exceptional” situation, to use a broader term which also
includes errors – occurs, the code which detects the situation can “throw” an excep-
tion. In C# code, this will look like:

public void Deposit(int amount)
{

if (amount < 0) // Error detected
{

NegativeAmountException ex = new NegativeAmountException("Deposit");
throw ex;

}

_balance = _balance + amount;

}

Here NegativeAmountException is a class we have defined ourselves. It inherits from
Exception, which makes a NegativeAmountException object “throwable”. Note the
keyword throw – this is where the object gets thrown. This is the signaling phase of
the error handling process. When an exception object is thrown, no more code in the
method is executed, just as if we had used the return keyword.

What does it mean more specifically to “throw” an object? Throwing an object is dif-
ferent from returning an object. An object which is thrown is passed up through the
method calling chain just as return values are, but – and this is a significant difference
– a method that has no interest in exceptions does not need to do anything at all in
terms of handling it. A thrown object will silently pass up through the method calling
chain, until someone decides to “catch” the exception object.

Catching an exception object is something a caller deliberately chooses to do. If you
are calling a method that might throw an exception, and you are intent on handling
the exception if it occurs, you should encapsulate the call in a try-catch statement:

18

BankAccount theAccount = new BankAccount();
try
{

theAccount.Deposit(-1000);
}
catch (NegativeAmountException ex)
{

Console.WriteLine($"{ex.Message}: Negative amount not allowed");
}

This may look a bit tedious with regards to syntax, but remember that it is only if you
have the intent of actually handling the error, that you need to use this construction.

How do we read the above code? The caller is aware that Deposit might throw an
exception, so he places the call in the try-part of the statement. If the call goes well,
nothing else happens – the catch-part does not come into play. However, if an excep-
tion is thrown, the exception is caught by the catch-part (this is the capturing phase).
Now the code in the catch-part is executed. In this simplified case, the code does a
very simplistic error handling (this is the handling phase), by printing out a message.
In a more realistic setting, the code might make a call to some code dedicated to
error handling, error recovery and error presentation. Once the error handling code
finishes, the statements following the entire try-catch statement will be executed.

We said above that the catch-part was executed if the Deposit-statement threw an
exception. That is not entirely accurate. The code will only be executed if an excep-
tion object of the type NegativeAmountException is thrown. A catch-statement will
only catch exceptions of that type we have specified in the parentheses following the
catch keyword. If a different exception had been thrown, it would not have been
caught here, but possibly further up the method calling chain. If we want to catch
more than one type of exceptions, we can simply write additional catch-blocks after
the first one, like:

BankAccount theAccount = new BankAccount();
try
{

theAccount.Deposit(-1000);
}
catch (NegativeAmountException ex)
{

Console.WriteLine($"{ex.Message}: Negative amount not allowed");
}
catch (LargeAmountException ex)
{

Console.WriteLine($"{ex.Message}: Amount must not exceed …");
}

19

In the above example, it seems reasonable to assume that NegativeAmount-
Exception and LargeAmountException are two exception classes defined on the
same level in an exception class inheritance hierarchy. They might both inherit from
the .Net library class ArgumentException (which itself inherits from Exception).
Suppose now that your exception handling logic is as follows:

• LargeAmountException (which inherits from ArgumentException) is handled
according to strategy A

• ArgumentException (other than LargeAmountException) is handled according
to strategy B

• Exception (other than ArgumentException)is handled according to strategy C

Can we express this in C# in a simple way? Indeed we can, again by including multiple
catch-blocks in our try-catch statement:

try
{
 // Some action which may generate an exception
}
catch (LargeAmountException ex)
{

// Strategy A
}
catch (ArgumentException ex)
{

// Strategy B
}
catch (Exception ex)
{

// Strategy C
}

In this way, you specify the most “specialized” error handling first, followed by more
and more general error handling. When an actual exception is generated, the appli-
cation will execute the first catch-clause (and only that clause) which matches the
type of the exception.

Rethrowing an exception

What if you want to do something if an exception occurs, but also want others to
have a chance of handling the exception? You can then “re-throw” the exception. A
common scenario could be that you wish to do some sort of logging of the exception,

20

but also want to do more specific exception handling further up the call chain. You
can then do a re-throw in the style illustrated below:

try
{

// Code that may throw exceptions
}
catch (Exception ex)
{

Logger.Log(ex.Message); // Log exception
throw; // Rethrow exception

 }

This is a quite useful construction, where someone having a stake in error handling
can perform a specific kind of handling, but also pass on the exception to others.

Exceptions summary

We now know the essentials of dealing with exceptional situations using exception
objects. The most important points are:

• The .NET class library contains a lot of exception classes, including the class
Exception, which is the base class for all exception classes. If you need a spe-
cialized exception class, explore the library first. There might be a class that fits
your needs.

• You can define your own exception classes, but they must inherit from Excep-
tion, or one of the other existing exception classes (including exception classes
you have defined yourself).

• You should throw early: as soon as you have discovered an error situation that
you don’t want to handle yourself, throw an appropriate exception.

• You should catch late: do not catch an exception unless you are sure what to
do with it. Do not catch an exception and then ignore it by doing nothing.

• Consider rethrowing the exception, when you have dealt with it. Others might
want a chance to handle the exception as well.

Exceptions is a construction that is a bit contrary to the ordinary flow-of-execution,
but once you get a grasp of it, it is a quite elegant and powerful way of dealing with
errors in a non-intrusive way. Remember, you only need to deal explicitly with (i.e.
write code for) exceptions, if you have an interest in handling them.

21

Generics – types as parameters

We discussed the DRY (Don’t Repeat Yourself) principle a while ago, and considered
the principle at various levels (instance field, method and class level). The goal was
always the same: avoid writing the same code over and over. At the class level, we
saw that inheritance is a useful mechanism for avoiding code duplication, since you
can place code shared by several classes in a base class, which can then be inherited
from. Still, some situations are not easily solved by inheritance.

Shortcomings of inheritance

Suppose we have defined a simple domain class Dog, and also wish to have a way of
representing family relations between dogs. Instead of defining family relations as a
part of the Dog class itself, we decide to create a separate class FamilyRelation,
which will represent family relations between Dog objects. Such a class could look
like this:

public class FamilyRelation
{

private Dog _self;
private Dog _father;
private Dog _mother;
private List<Dog> _children;

public FamilyRelation(Dog self, Dog father, Dog mother)
{

_self = self;
_father = father;
_mother = mother;
_children = new List<Dog>();

}

public Dog Self { get { return _self; } }

public Dog Father { get { return _father; } }

public Dog Mother { get { return _mother; } }

public List<Dog> Children { get { return _children; } }

public void AddChild(Dog child)
{

_children.Add(child);
}

}

22

This is pretty straightforward, and we can easily start to use this class:

Dog self = new Dog("King");
Dog mom = new Dog("Spot");
Dog dad = new Dog("Rufus");

FamilyRelation relations = new FamilyRelation(self, mom, dad);
relations.AddChild(new Dog("Lajka"));

So far, so good. Now we also define a domain class Cat, and also wish to be able to
represent family relations between Cat objects. We cannot use the FamilyRelation
class as-is, since it operates on Dog objects. We can do a copy-paste of the class, and
create a (very similar) class FamilyRelationCats, where we simply replace Dog with
Cat. However, this is exactly the situation we wish to avoid…

Cat and Dog are probably strongly related classes, and it will probably make sense to
define a base class Animal, from which both Dog and Cat can inherit. If we do that,
we could also update the FamilyRelation class:

public class FamilyRelation
{

private Animal _self;
private Animal _father;
private Animal _mother;
private List<Animal> _children;

 // ...and so on
}

Now we can use the FamilyRelation class for both Dog and Cat objects. There are
however several problems with the class:

1. Nothing will prevent us from mixing Cat and Dog objects, so a cat could e.g. be
the father of a dog…

2. The return type of the properties will be Animal, so we will need to try to cast
the returned object to a derived class, if we need to do something Cat- or Dog-
specific with the object.

3. We can only use the FamilyRelation class for classes inheriting from Animal,
even though the FamilyRelation class itself does not use any Animal-specific
methods or properties.

23

Using inheritance cannot really solve these problems for us. What we really want is
to turn the type of the objects used in FamilyRelation into a parameter. That is, we
wish to define the FamilyRelation class with a general type parameter, and wish to
use the FamilyRelation class with a specific type as argument. This is essentially the
same strategy we use when defining a simple method; we define the method in a
general way, possibly by including parameters:

public int ReturnLargest(int a, int b)
{

return (a < b ? b : a);
}

and we use the method with specific values as arguments:

ReturnLargest(7, 12);

Using types as parameters

The feature in C# called Generics is exactly the ability to use types as parameters to
class definitions (and to methods, which we will also see examples of). We have used
this ability already without calling it Generics, when we saw examples of data struc-
tures. If we needed a list of integers, we could declare it like this:

List<int> myNumbers = new List<int>();

This will create a List object, into which we can only insert int values. Also, any me-
thod that returns an item in the list will have the return type int. In that sense, the
List class – or more correctly, the List<T> class – is type-safe. We cannot accidentally
insert elements of different types into the list, and the items returned from the list
have the correct type, i.e. no need for casting. The <T> following the List class name
indicates that the List class takes one type parameter – just as a method can take one
parameter – which must be specified when using the class, as above. Type parame-
ters can be called whatever you like – just as a parameter to a method – but are usu-
ally called T (T for Type, maybe…).

With this knowledge, we can create a new and more generally applicable version of
the FamilyRelation class:

24

public class FamilyRelation<T>
{

private T _self;
private T _father;
private T _mother;
private List<T> _children;

public FamilyRelation(T self, T father, T mother)
{

_self = self;
_father = father;
_mother = mother;
_children = new List<T>();

}

public T Self { get { return _self; } }

public T Father { get { return _father; } }

public T Mother { get { return _mother; } }

public List<T> Children { get { return _children; } }

public void AddChild(T child)
{

_children.Add(child);
}

}

We have simply substituted Dog with T, and added the <T> type parameter declara-
tion after the FamilyRelation class name. At first sight, this may look confusing. What
is T actually? Is it a new class? No, it is simply a (type) parameter to the class. Again,
think of it as very similar to a parameter to a method. You can give it any name you
like, and when you use the method, you must provide a specific value as argument. If
we now wish to use the FamilyRelation class, we must provide a specific type:

FamilyRelation<Dog> relations = new FamilyRelation<Dog>(self, mom, dad);
relations.AddChild(new Dog("Lajka", 45, 20));

The variable relations now refers to a FamilyRelation object, specialized to the Dog
type. This solves the problems listed before:

1. We can only insert Dog objects into the FamilyRelation object
2. All properties have the return type Dog (or List<Dog>)
3. Dog does not need to inherit from a certain base class in order to be used with

the FamilyRelation class.

25

Using the FamilyRelation class to define relations between Cat objects is now as easy
as it gets:

Cat a = new Cat("Stripe");
Cat b = new Cat("Socks");
Cat c = new Cat("Abby");

FamilyRelation<Cat> catRelations = new FamilyRelation<Cat>(a, b, c);

It doesn’t take much consideration to conclude that any type – even simple types like
int – can be used with FamilyRelation. Using a class called FamilyRelation to repre-
sent relations between numbers is perhaps a bit warped, but the point is still valid.
This could also be seen as an argument for choosing the non-descriptive name T for
the type parameter. We could have chosen to call the type parameter TAnimal (not
to be confused with a base class called Animal) to try to indicate the intended use of
the class, but that would not prevent anyone from using it with a completely unrela-
ted type like int. The name T has no implicit meaning in itself, and thus indicates that
“anything goes” with regards to choice of type.

Type constraints

The above considerations about what types to use with FamilyRelation leads directly
to an important Generics sub-topic: type constraints.

The FamilyRelation class could be type-parameterized very easily, since the class
does little more than store and return items of type T. The term “item” is chosen
deliberately, since these items may not even be objects, if a simple type like int is
used. If we begin to add functionality involving the stored items, we may however
run into problems quite soon. Suppose we add the modest requirement that we can
create a new FamilyRelation object, when only the “self” is known. We suppose that
the mother and/or father can be added later. This could be done by adding an extra
constructor, like this:

public FamilyRelation(T self)
{

_self = self;
_father = null;
_mother = null;

}

26

Trying to compile this code will produce an error “Cannot convert null to type para-
meter T, because it could be a value type”. This seems reasonable; if the chosen type
is int, we are trying to assign null to an instance field of type int, which does not
make much sense.

This could be an opportune moment to consider, if we really want to allow use of the
FamilyRelation class with any type. If we come to the conclusion that the used types
should at least be class types (i.e. not simple types like int or bool), we can specify
this by adding a type constraint to the class definition:

public class FamilyRelation<T> where T : class
{

// Rest of class definition omitted
}

This expresses that T must at least be of a class type. Adding this constraint to the
class definition has two consequences in relation to the previous code:

1. The extra constructor is now valid and can compile.
2. Using FamilyRelation with type int now causes a compilation error.

This is exactly as intended. We can take this principle further, and e.g. constrain T to
be a class that inherits from a base class Animal:

public class FamilyRelation<T> where T : Animal
{

// Rest of class definition omitted
}

Placing this constraint on T also allows us to start using the instance fields, i.e. call
methods on the objects referred to by the instance fields. If the Animal class contains
a property Name, the below will be legal code inside the FamilyRelation class:

public void PrintNamesOfParents()
{

Console.WriteLine($"Parents: {_father.Name} and {_mother.Name}");
}

Due to the constraint on T, we are now guaranteed that the Name property will
always be available, and it is therefore valid to use it.

27

Deciding exactly how to constrain a type parameter can be a bit tricky. It will always
be a balance between keeping the class as general as possible (i.e. keeping the con-
straints minimal) and being able to perform type-specific operations within the class
(i.e. having enough constraints). You should generally strive to have “just enough
constraints”. If a constraint can be removed without causing compilation errors, it
should obviously be removed. You should also consider carefully what operations you
really need to perform with type-parameterized objects. Finally, Visual Studio is often
able to provide useful suggestions for adding (or removing) constraints on type para-
meters.

Type parameter variance

A very natural question relating to type parameters concerns how they relate to inhe-
ritance. More specifically: If we have defined a class A, and also define a class B which
inherits from A, we know from Polymorphism whether or not the below lines of code
are valid:

A a = new B(); // OK
B b = new A(); // Error

Suppose now we have another class C<T>, which takes one type parameter T. This
could be the FamilyRelation class defined above. What would we except about these
lines of code?:

C<A> ca = new C(); // ??
C cb = new C<A>(); // ??

Based on intuition, many will probably guess that the same validity applies here, such
that the first line is valid while the second is not. It turns out that none of these lines
of code are valid… The reasons for this are a bit tricky, but let’s have a look at it.

First of all, we will use the Animal class as a base class, and the Dog class as subclass.
We thus have this code as our starting point:

Animal a = new Dog("Spot"); // OK
C<Animal> ca = new C<Dog>(); // Error

The class C is now defined as having a single instance field and two very simple
methods:

28

public class C<T>
{

private T _t;

public T Get()
{

return _t;
}

public void Set(T t)
{

_t = t;
}

}

Let us now for a moment assume that the below line is in fact valid:

C<Animal> ca = new C<Dog>();

This will create an object of type C, where T is set to Dog. So, what type of object can
be returned by the call ca.Get()? Only an object of type Dog, and since Dog is a sub-
class of Animal, this is a perfectly valid object to return in response to calling the Get
method on ca, since this method has the return type Animal. Remember that C<Dog>
does not inherit from C<Animal>, so this is not a matter of polymorphism! The con-
clusion is thus that with respect to the Get method, the above statement would be
safe.

What about the Set method? If we call ca.Set(…), what type of objects will then be
valid arguments to Set? Since ca has the type C<Animal>, the Set method will accept
any object of type Animal, including – but not limited to – Dog. The last part is what
breaks our assumption. If e.g. Cat inherits from Animal, we can call ca.Set(…) with a
Cat object, which cannot be inserted into an object of type C<Dog>…

Let’s also consider the second line, which does look very contra-intuitive:

C<Dog> cd = new C<Animal>();

We immediately run into problems when considering the Get method. This method
can only return objects of type Dog, but we may easily have an object of a different
type (e.g. Cat) in the referred-to object, which breaks our assumption. However, the
Set method does not break the assumption! In this case, the Set method only accepts
objects of type Dog, which we can safely insert into an object of type C<Animal>,
since Dog inherits from Animal.

29

The conclusion so far is thus: Given our current implementation of the class C<T>, it
makes perfect sense that the two assignment statements from above are invalid.
There does however seem to be a pattern as to how the validity is broken. Methods
that return a value of type T induce one kind of “breakage”, while methods taking a
parameter of type T induce a different kind. It turns out that this difference can be
exploited further.

Let’s now add two interfaces to the mix. We define two interfaces IGet and ISet,
respectively:

public interface IGet<T>
{

T Get();
}

public interface ISet<T>
{

void Set(T t);
}

The original class C<T> now implements these two interfaces:

public class C<T> : IGet<T>, ISet<T>
{

private T _t;

public T Get()
{

return _t;
}

public void Set(T t)
{

_t = t;
}

}

We can now try out some slightly different statements:

IGet<Animal> iga = new C<Dog>();
ISet<Dog> isd = new C<Animal>();

30

With the above class definitions, both lines of code are deemed invalid by the compi-
ler. However, if you perform an analysis similar to the previous analysis, you come to
the conclusion that both lines are actually safe, and thus in principle valid. So why
does the compiler not agree? It turns out that you have to specify your “intention”
with a type parameter explicitly in the interface definitions:

public interface IGet<out T>
{

T Get();
}

public interface ISet<in T>
{

void Set(T t);
}

The keywords in and out make our intention explicit: A type parameter marked with
in will only be used as a type for “input” parameters to methods, while a type para-
meter marked with out will only be used as a type for return values for methods and
properties. The compiler should in principle be able to deduce this, but it turns out to
be a quite hard problem in practice, which is why it was decided by the designers of
C# that the programmer must state this explicitly. In C#, it is also only allowed to add
these keywords to type parameters for interfaces, not for classes in general.

The keywords in and out are pretty closely related to the stated intentions; to use
the type parameter only for input or output, respectively. More formally, for an
interface like IGet<out T>, T is said to be declared as being co-variant, while for an
interface like ISet<in T>, T is said to be declared as being contra-variant. These terms
originate from so-called “category theory” in Mathematics. If a type parameter is not
marked with either in or out, it is said to be invariant. The keywords in and out are
probably easier to remember… As with type constraints, the development environ-
ment is capable of suggesting when to declare a type parameter to be co- or contra-
variant.

The final – and most important – question in relation to this topic is of course: Should
I care about this? Is it just an academic observation, or does it have any practical con-
sequences? Whether or not you will ever face a situation where type parameter vari-
ance will be a crucial matter, is of course very hard to predict. Still, you need not look
further than the .NET class library for some very concrete examples. We will take a
closer look at two commonly used interfaces in the library, called IComparable<T>
and IComparer<T>.

31

The IComparable<T> and IComparer<T> interfaces

Continuing our example with the Animal class and the Cat and Dog subclasses, we
can imagine that it at some point becomes necessary to sort a list of e.g. Dog objects,
for instance according to weight. Since weight is a property all animals have, it makes
sense to implement a Weight property in the Animal base class. Having done this, we
can go ahead and try to sort a list of Animal objects:

List<Animal> animals = new List<Animal>();
animals.Add(new Dog("King", 70));
animals.Add(new Dog("Spot", 30));
animals.Add(new Dog("Rufus", 80));
animals.Sort();

This naïve attempt will not succeed; in fact, the code will cause an exception to be
thrown when the Sort method is called (an InvalidOperationException). This is a
reasonable reaction, since the Sort method has no way of knowing that we wish to
sort according to weight. How can we state this intention to the Sort method? In
order to be able to sort a set of objects, we must be able to compare them to each
other. An object must be “greater than”, “equal to” or “smaller than” another object,
in order to perform a meaningful sorting of the objects. One way of achieving this is
to let the objects implement the IComparable<T> interface. This interface contains
just one method CompareTo:

int CompareTo(T other);

The specification of the behavior of the CompareTo method is as follows:

if then return

The object on which the method is called is
smaller than the argument object

A value less than 0 (zero).

The object on which the method is called is
equal to the argument object

0 (zero).

The object on which the method is called is
greater than the argument object

A value greater than 0 (zero).

32

A valid implementation of CompareTo in the Animal class is therefore:

public int CompareTo(Animal other)
{

if (Weight < other.Weight) { return -1; }

if (Weight > other.Weight) { return 1; }

return 0;
}

If we now attempt to run the code containing the call of Sort on the list of Animal
objects, the code will execute without errors, and the list will be sorted as intended.
How does this relate to type parameter variance? Only by the fact that the type para-
meter T in the IComparable<T> interface is in fact declared as being contra-variant,
since T is only used as the type for the method parameter (i.e. input).

Letting your class implement the IComparable<T> interface is one way of making the
objects “comparable”, and thereby sortable. However, there are two drawbacks:

1. You may not always be able to let a class implement IComparable<T>. The
class may be a third-party class, or may due to other circumstances be “closed
for modification”.

2. You lock the comparison to one specific implementation. You might need to
sort the objects according to a different criterion, which would then require
modification of the CompareTo method.

An alternative is to use the IComparer<T> interface. This interface is not an interface
that the class itself should implement, but rather an interface that a class dedicated
to comparing objects of type T should implement. The interface is as such very similar
to the IComparable<T> interface:

int Compare(T x, T y);

The specification of the behavior of the Compare method is as follows:

if then return
Object x is smaller than object y A value less than 0 (zero).
Object x is equal to object y 0 (zero).

Object x is greater than object y A value greater than 0 (zero).

33

We can then create a new class AnimalComparerByWeight, like this:

public class AnimalComparerByWeight : IComparer<Animal>
{

public int Compare(Animal x, Animal y)
{

if (x.Weight < y.Weight) { return -1;}

if (x.Weight > y.Weight) { return 1;}

return 0;
}

}

Again, note that this is a brand new class, that is not part of the Animal class itself.
With this class available, we can sort our list of Animal objects in a slightly different
way:

IComparer<Animal> comparer = new AnimalComparerByWeight();
animals.Sort(comparer);

We have now separated the comparison functionality from the Animal class itself,
and can now provide a specific implementation of IComparer<Animal> as an argu-
ment to the Sort method. If we later wish to compare (and sort) Animal objects by a
different criterion, we simply create a new class containing a different implementa-
tion of IComparer<Animal>, and use an object of that class as an argument to Sort.

Is this then an illustration of contra-variance? Yes, in the sense that T is also declared
as contra-variant for this interface. A more tangible advantage does however reveal
itself, if we make a small modification to our code:

List<Dog> animals = new List<Dog>();
animals.Add(new Dog("King", 70));
animals.Add(new Dog("Spot", 30));
animals.Add(new Dog("Rufus", 80));

IComparer<Animal> comparer = new AnimalComparerByWeight();
animals.Sort(comparer);

The animals list is now a List of Dog objects, not a List of Animal objects. That is, the
type parameter T is now Dog. If you read the specification of the Sort method (the
version taking an IComparer implementation as a parameter), you will see that the
type of the parameter is IComparer<T>, meaning that the actual type should now be
IComparer<Dog>, where it previously was IComparer<Animal>. However, the vari-
able comparer has type IComparer<Animal>… Still, the method does accept the

34

argument of type IComparer<Dog>, because of contra-variance! What effectively
happens when using comparer as argument is something like this:

IComparer<Dog> ic = comparer; // of type IComparer<Animal> !!

This is exactly the kind of contra-intuitive assignment we discussed earlier, which is
only feasible due to the contra-variance of T in IComparer<T>. If this was not possi-
ble, what would the consequence be? You would then need to create a separate
class implementing IComparer<Dog> – so it could be used as a parameter for Sort –
but also a class implementing IComparer<Cat>, and a similar class for all subclasses
to Animal! This would be a severe drawback as compared to having a single imple-
mentation in the Animal base class. So even though co- and contra-variance may
appear a bit academic, it does provide tangible and significant advantages in practice.

Generic methods

A final point in relation to Generics is the fact that you can also use Generics at the
method level. The classic example is a method Swap for swapping two values (the ref
keyword means that the arguments are “by-reference”, which means that the values
of a and b will indeed by swapped, also after the method has completed. If we omit-
ted the ref keyword, it would be copies of a and b that would be swapped):

public void Swap<T>(ref T a, ref T b)
{

T temp = a;
a = b;
b = temp;

}

Just as for classes, you need to specify a concrete type when calling Swap, like this
(assuming that the type of swapper is a class containing the Swap method):

int x = 12;
int y = 21;
swapper.Swap<int>(ref x, ref y);

In practice, it turns out that the compiler can often figure out the correct type by exa-
mining the type of the arguments, so you can actually omit the type specification:

int x = 12;
int y = 21;
swapper.Swap(ref x, ref y);

35

You can specify a generic method in any class (and interface), and the class itself does
not need to have any type parameters. Finally, you can also impose constraints on
the type parameter, using the same syntax as for classes:

public void Swap<T>(ref T a, ref T b) where T : class
{

T temp = a;
a = b;
b = temp;

}

36

Functions as parameters

The previous chapter has (hopefully) illustrated that the parameter concept goes
beyond simple data, since we can perceive types as parameters as well. This ability
helps us define code that is as general as possible, postponing the specific choices for
values and types to invocation rather than definition. The next step down this road is
to perceive functions (i.e. methods) as potential parameters as well.

A first attempt at function parameterization

Consider for instance the problem of finding an object matching certain conditions in
a collection. Suppose we have defined a simple class Car, like this:

public class Car
{

private string _licensePlate;

public string LicensePlate { get { return _licensePlate; } }

// Rest of class definition omitted

}

We could then imagine storing Car objects in a Dictionary<string, Car>, since the
LicensePlate property is a good candidate for acting as a key for Car objects. This
makes it very easy to retrieve a Car object with a specific license plate:

string licensePlate = "CJ 32 802";
if (carsDict.ContainsKey(licensePlate))
{

Console.WriteLine(carsDict[licensePlate]);
}

Now suppose that we for some reason – maybe due to the usage pattern for our col-
lection of Car objects – have decided to store the Car objects in a List<Car> object
instead. This makes it a bit harder to find a Car object with a specific license plate,
since we have to explicitly iterate through the collection:

Car theCar = null;
foreach (Car aCar in carsList)
{

if (aCar.LicensePlate == licensePlate)
{

theCar = aCar;
}

}

37

This is a very generic piece of code. If we wish to find a Car object matching a diffe-
rent condition, we only have to change the condition in the if-statement:

Car theCar = null;
foreach (Car aCar in carsList)
{

if (aCar.Price == price)
{

theCar = aCar;
}

}

Since we like DRY code (Don’t Repeat Yourself), it would be nice if we could just write
this code once, and then turn the part that varies into a parameter. This is a principle
we generally apply when making methods as general as possible. However, the part
that varies is now not just a simple data value or a type; it is a small piece of logic.

What is the nature of the code in the condition part of the if-statement? It definitely
returns a bool value, since it is indeed used as a condition. It also seems reasonable
to assume that the condition always involves a Car object, since the whole purpose of
the code is to select a specific Car object. We can then think of that piece of code as
being a function itself, with at least two properties:

• It takes a Car object as input

• It returns a bool value

We can compare this with the four elements we always require in order to define a
proper function:

• A name

• A parameter list

• A return type

• A body

So far, we only have two of these. In order to create a proper function for e.g. the
case where we want a match on the Price property, we could create a method
named PriceMatch:

private bool PriceMatch(Car aCar, int price)
{

return aCar.Price == price;
}

38

We can then rewrite the loop from above as:

Car theCar = null;
foreach (Car aCar in carsList)
{

if (PriceMatch(aCar, price))
{

theCar = aCar;
}

}

However, this is not really enough. If we want to match on e.g. the license plate, we
will have to alter the code once again. What we really want is to turn the condition
itself into a parameter, like this (NB: the below code does not compile):

public Car FindCar(List<Car> carsList, Condition matchCondition)
{

Car theCar = null;
foreach (Car aCar in carsList)
{

if (matchCondition(aCar, ...))
{

theCar = aCar;
}

}

return theCar;

}

We should then be able to call this code like so:

FindCar(carsList, PriceMatch);

We’re closer, but this doesn’t work either. The problem is that the condition methods
require different sets of arguments, depending on their specific implementation. The
PriceMatch method requires a price (of type int), a LicensePlateMatch method may
require a license plate (of type string), and so on. Are we then at a dead end? Fortu-
nately not! We can solve this problem by introducing lambda expressions1.

1 The language construction we denote as lambda expressions can also be denoted as anonymous functions. There
are some subtle differences between the two concepts; we will use the term lambda expression here, even though it
may in some situations not be 100 % accurate.

39

Lambda expressions

The short definition of a lambda expression is “an expression that returns a function”.
This may sound very abstract, but it is actually not so different from what we have
seen before. We have definitely seen both arithmetic and logical expressions before;
such expressions take a number of parameters as input, and returns a value:

int x = 7;
int y = 12;

int resultOfArithmeticExp = x * y;
bool resultOfLogicExp = x < y;

We can write these two expressions in a more formal way:

A) (int x, int y) => int
B) (int x, int y) => bool

This should be read as:

• Expression A takes two int parameters x, y as input, and returns an int value

• Expression B takes two int parameters x, y as input, and returns a bool value

So far, so good. Let us now write two slightly more complex expressions:

A) (int x, int y) => { return x * y; }
B) (int x, int y) => { return x < y; }

This should be read as:

• Expression A takes two int parameters x, y as input, and returns a function that
calculates (x * y) and returns the result

• Expression B takes two int parameters x, y as input, and returns a function that
calculates (x < y) and returns the result

The mind-bending part about this definition, is to realize that it is not describing invo-
cation of the code in the expressions; it is describing a parameterized function, which
we can “invoke” later on with specific arguments. These are examples of lambda
expressions. It is probably still hard to see how this helps us, with regards to the
previous problem of matching a Car object to specific values. Let’s try to formulate a
lambda expression closer to what we need:

40

(Car c) => { return (code for a specific matching condition); }

This is also a lambda expression. When will we write such an expression? Typically
just when we need it. Let’s see it in the context of an actual Car collection:

List<Car> carsList = new List<Car>();

// ...some Car objects are added to the list

string licensePlate = "CJ 32 802";
int price = 45000;

Predicate<Car> carMatchFunc = (Car c) => { return c.Price == price; };
Car matchCar = carsList.Find(carMatchFunc);

carMatchFunc = (Car c) => { return c.LicensePlate == licensePlate; };
matchCar = carsList.Find(carMatchFunc);

There are several things to take note of in this code. In the highlighted line, we have
specified a lambda expression (the yellow part), which follows the syntax we intro-
duced above. A particularly interesting feature is that the function part (after the =>
symbol) uses the local variable price. This has the very important consequence that
the function only needs a Car object as parameter. So, this particular lambda expres-
sion takes a Car object as input, and returns a function that compares the Price pro-
perty on the Car object with the value of the local variable price.

What about the blue part? The lambda expression in the yellow part returns a func-
tion taking a Car as input, and returning a bool. This kind of function is considered a
type, just as any other type in C#. The type Predicate<T> – which is part of the .NET
class library – is defined as being a function taking a parameter of type T, and retur-
ning a bool value. The variable carMatchFunc thus has the type “a function taking a
Car object as input, and returning a bool value”. This is exactly what our lambda
expression does, so the code is indeed valid.

In the next line, we make the call carsList.Find(carMatchFunc). If you study the docu-
mentation for the List<T> class, you will see that the Find method precisely takes a
parameter of type Predicate<T>. The method will then return the (first) object for
which the function returns true. The call carsList.Find(carMatchFunc) will thus return
the first Car object for which the Price property equals the value of price. This is ex-
actly the functionality we wanted! The last two lines illustrate that carMatchFunc is
indeed just a variable, to which we can assign different values. In this case, we assign
a different lambda expression to the variable (now matching on license plate), and
call Find again.

41

Wrapping your mind around this functions-as-parameters idea is mentally challeng-
ing, and it requires you to think about functionality in a quite abstract way. Still, it is
just another incarnation of principles we have seen before. Let’s try to compare the
code from above to some simpler code:

Predicate<Car> carMatchFunc = (Car c) => { return c.Price == price; };
Car matchCar = carsList.Find(carMatchFunc);

// ...is just as
int index = 12;
Car someCar = carsList[index];

carMatchFunc = (Car c) => { return c.LicensePlate == licensePlate; };
matchCar = carsList.Find(carMatchFunc);

// ...is just as
index = 16;
someCar = carsList[index];

In the first half of the code, we declare some local variables; two of type Car, one of
type int named index, and one of type Predicate<Car> named carMatchFunc. We
assign a specific value 12 to index, and a specific “value” (being a lambda expression)
to carMatchFunc. We then use these variables – with the values currently assigned to
them – to look up some Car objects. In the second half of the code, we assign new
values to index and carMatchFunc – the value 16 and a new lambda expression, re-
spectively – and once again use them to look up Car objects. So, we declare variables
and assign values in the code shown above; those variables – and thus their current
values – are then used inside the List methods.

For completeness, it should be mentioned that the List class contains several variants
of the Find method. Find finds the first object for which the given predicate returns
true, while the FindLast method finds the last object. We can easily imagine that the
predicate will return true for more than one object, so a FindAll method is also avail-
able, which returns all objects for which the predicate returns true.

The syntax for lambda expressions described above can be considered the ”fully dres-
sed” version of the syntax. The compiler can often deduce the type of the parameters
from the context, and you can also omit parentheses if the expression only takes a
single parameter. A more succinct version of the code in our example is thus:

Car matchCar = carsList.Find(c => c.Price == price);
matchCar = carsList.Find(c => c.LicensePlate == licensePlate);

42

Delegates

The ability to parameterize functions with other functions is a powerful tool, when it
comes to writing functions which are as general as possible. The FindAll method is a
nice illustration of this idea; we can write a general method that performs an itera-
tion through a collection of objects, picking out objects that match a certain condi-
tion, while making it possible for the caller to specify the exact condition. We also
saw that the “signature” of a method (input parameters and return value) can be
considered a type – the Predicate<Car> was an example of this – and we can there-
fore declare variables of such a type, and let them refer to e.g. a lambda expression.
This was just a single example of a so-called delegate.

A delegate is essentially just a variable that can refer to a function. We claimed in the
previous section that using a variable of such a “function-reference” type was quite
similar to using e.g. an int variable, and that is almost true. The “almost” is added due
to the fact that a delegate can in fact refer to a collection of functions! That is, a dele-
gate can refer to zero, one or many functions. When a delegate is invoked, it will in
turn invoke all of the functions to which it refers; it “delegates” the actual work to
these functions.

The original syntax for creating and using delegates is a bit peculiar, so we will just
show it briefly for completeness, and then proceed quickly to a more modern style.
The Predicate<T> is an example of a this modern style.

Creating and using a delegate formally involves first creating a delegate type, and
then a declaring a variable of that type:

delegate bool CarCheckDelegate(Car c);
private CarCheckDelegate theCarCheckDelegate = null;

The first line declares the type CarCheckDelegate, which returns a bool value, and
takes a Car object as parameter. The next line then declares a variable theCarCheck-
Delegate of type CarCheckDelegate, and sets its initial value to null. With this in
place, we can then assign a function reference to the variable:

theCarCheckDelegate = c => c.LicensePlate == licensePlate;

43

We have still not executed any code; to do this, we must “invoke” the delegate:

Car aCar = new Car("CJ 32 802", 5, 50000);
bool result = theCarCheckDelegate(aCar);

The last line will invoke all of the functions to which the delegate currently refers (in
this example just one function).

The above code is valid and will work fine, but the somewhat lengthy syntax can be
avoided by using some of the built-in, type-parameterized delegate types, like e.g.
Predicate<T>. A handful of these delegate types exist:

Action
Action<T1>
Action<T1, T2>
…
Action<T1,…,T16>

An Action delegate has no (i.e. void) return type. All type parameters
are thus the types of the input parameters. You can specify up to 16
input parameter types.

Func<TRes>
Func<T1, TRes>
Func<T1, T2, TRes>
…
Func<T1,…,T16, TRes>

A Func delegate has return type TRes. All type parameters except the
last one are thus the types of the input parameters. You can specify
up to 16 input parameter types.

Predicate<T> A Predicate delegate always returns a bool, and takes one input
parameter of type T.

Converter<TIn, TOut> A Converter delegate always returns a value of type TOut, and takes
one input parameter of type TIn.

Comparison<T> A Comparison delegate takes two input parameters of type T, and
should return an int value, following the same rules as specified for
the IComparer interface.

It is fairly easy to see that the last three types of delegates are just special cases of
the Func delegate. So why do they exist at all? Mostly for historic reasons... Knowing
about Action and Func is usually sufficient to work with delegates, and it is generally
recommended to use Action and Func instead of the older, more specific types.

We have already seen that use of the built-in delegate types makes the syntax a bit
shorter. Declaring a delegate is typically a one-line operation now:

Func<Car, bool> theCarCheckDelegate = null;

Assignment to – and invocation of – the delegate follows the same syntax as before.

44

We claimed above that a delegate can refer to a collection of functions. The syntax
for this is fairly straightforward. When the delegate has been declared as above, it
refers to zero functions. Adding a reference to a function is done by using the +=
operator:

theCarCheckDelegate += c => c.LicensePlate == licensePlate;

In general, you should use += when adding a function reference to a delegate, since
using = will remove the existing references! You can subsequently add more function
references to the delegate, and even remove them again using the -= operator.
When the delegate is invoked at some point, all functions to which the delegate
refers are invoked, using the same arguments as specified in the delegate invocation.

Events

The idea of having variables referring to methods, and to invoke several methods
“indirectly” through a delegate, does seem to be in contrast with the usual way of
structuring code, where method calls are written explicitly. We have already seen
that the delegate concept is a useful tool for turning code into a parameter, but that
does not imply that delegates in general are a superior way to structure code. For
applications where many “clients” (a “client” is here defined as a specific part of the
application code) are interested in being informed about changes in other parts of
the code, delegates can be suitable solution. The C# language construction called
events are specifically designed for such scenarios. Events and delegates are closely
related.

The only feature that distinguishes an event from an ordinary delegate is the use of
the keyword event used in the declaration:

event Action<double> TemperatureChanged;

This declares an event of type Action<double> (no return value, takes one parameter
of type double), in a way that looks very similar to how you declare delegates.

How could this event be used in practice? Suppose we have defined a class Tempera-
tureMonitor, which e.g. monitors a temperature measurement device. The event
declared above could then be part of this class. It would be declared either as a pub-
lic instance field, or hidden behind methods/properties. In the code below, the first
solution has been chosen:

45

public class TemperatureMonitor
{

private double _temperature;

public event Action<double> TemperatureChanged;

public TemperatureMonitor()
{

TemperatureChanged = null;
}

// We assume somebody calls MonitorDevice at regular intervals.
private void MonitorDevice()
{

// We assume GetTemperatureFromDevice retrieves
// an actual temperature from some physical device.
double newTemperature = GetTemperatureFromDevice();

if (Math.Abs(newTemperature - _temperature) > 0.1)
{

_temperature = newTemperature;
OnTemperatureChanged();

}
}

private void OnTemperatureChanged()
{

TemperatureChanged?.Invoke(_temperature);
}

}

The single line in the OnTemperatureChanged method is a standard code “idiom” (a
short piece of code used very often), which reads “if TemperatureChanged is not
null, call Invoke on TemperatureChanged, otherwise do nothing”. Invoke is a met-
hod which is available on all variables of an event type, and calling it will call all of the
functions which are currently referred to by the event.

Given the code in MonitorDevice, the net effect is thus that whenever the tempe-
rature changes (we have included a threshold of 0.1 degree, to avoid calling OnTem-
peratureChanged on very small changes), the method OnTemperatureChanged is
called, which in turn invokes the event TemperatureChanged. When an event is
invoked, is it often called to raise the event.

The idea is now than any client interested in knowing about temperature changes
can “attach” a function to the event. The only requirement for the function is that it
must match the type of the event, in this case Action<double>. We can imagine that
e.g. a class responsible for displaying the temperature in a GUI would like to be noti-
fied about temperature changes:

46

public class GUIClient
{

// Rest of class omitted for brevity

public void TemperatureHasChanged(double temperature)
{

Console.WriteLine("Current temperature : " + temperature);
}

}

The TemperatureHasChanged method can now be attached to the event:

TemperatureMonitor monitor = new TemperatureMonitor();

GUIClient client = new GUIClient();
monitor.TemperatureChanged += client.TemperatureHasChanged;

Note that the attachment is done for objects; if we for some reason need several
GUIClient objects, we must attach the TemperatureHasChanged method to the
event for each of those objects.

It is not obvious why we need the event keyword at all, since an event seems to be
just like any other delegate. That is true, except for a subtle difference, relating to a
remark made earlier in this section. Note that in the highlighted line of code, we use
the += operator to attach a method to the event. This is the correct way to do this,
since using = would remove all previously attached methods. However, for an event,
we cannot use = at all! If we try to change += to = in the above code, Visual Studio
reports an error: “The event TemperatureChanged can only appear on the left-hand
side of += and -=, except when used within the class TemperatureMonitor”. Remov-
ing the event keyword from the declaration of TemperatureChanged in Tempera-
tureMonitor – thereby turning it into an ordinary delegate – will “fix” the error, i.e.
make the code compilable again. Adding the event keyword is thus a sort of fail-safe
mechanism, preventing improper use of the event.

The concept of “event-driven applications” is not easy to grasp initially, since it is very
different from the classic, sequential execution model. However, whenever you have
an application where one part of the application needs to know immediately if some-
thing specific happens in another part, using events will often be an appropriate solu-
tion. The typical example is a GUI-rich application, where the GUI needs to invoke an
action when a user performs a GUI operation. Events can also be used if changes in
data (as in the example) need to be relayed to other parts of the code immediately.

47

Exercises

Exercise OOP.2.1

Project EmployeesV10

Purpose See inheritance in action. Reorganize existing code to use inheritance.

Call base class constructors.

Description The project contains two existing classes Teacher and ITSupporter.
They have quite a lot in common, so there is a lot of code duplication
to get rid of.

Steps Reorganize the code using inheritance

1. Create a new class Employee, that contains the common parts from
Teacher and ITSupporter.

2. Let Teacher and ITSupporter inherit from the Employee class. The code in
Program.cs should work as before. Remember that the derived classes will
need to call the base class constructor.

48

Exercise OOP.2.2

Project WeaponShopV10

Purpose Complete the implementation of two derived classes.

Description The project contains the class Weapon, which is used as a base class for two spe-
cific weapon classes: Wand and Axe.

A Wand:

• Has a description, plus a minimum and maximum amount of damage dealt
(see class definition).

• Can be “enchanted”. When enchanted, the wand deals double damage. A
wand is initially not enchanted.

An Axe:

• Has a description, plus a minimum and maximum amount of damage dealt
(see class definition).

• Gets duller when used. This means that after each use, the minimum and
maximum amount of damage dealt drops by three damage points.

• Can be sharpened. This restores the minimum and maximum amount of
damage dealt to the initial values.

Steps 1. In the Wand class, implement a property IsEnchanted of type bool. This
property should represent whether or not the wand is currently enchan-
ted. The property should have both a get-part and a set-part.

2. Also in the Wand class, implement a method DamageFromWand, which
takes no parameters, and returns the amount of damage dealt by the
wand (Hint: Use the method CalculateDamage from the base class).
Remember the requirement about damage when enchanted.

3. In the Axe class, implement a method DamageFromAxe, which takes no
parameters, and returns the amount of damage dealt by the axe (Hint: Use
the method CalculateDamage from the base class). The method should
also lower the values of maximum and minimum damage by three points.

4. Also in the Axe class, implement a method Sharpen, which takes no para-
meters, and returns no value. The method should reset the values of maxi-
mum and minimum damage to their initial values (Hint: use the constants
defined in the class).

5. Open the WeaponTester class, uncomment all of the code currently com-
mented out, and run the test. Do the results seem reasonable?

6. In WeaponTester, take a look at the methods UseWand and UseAxe. How
are they similar? How are they different?

49

Exercise OOP.2.3

Project WeaponShopV20

Purpose Modify the implementation of two derived classes, to take advantage
of virtual/override construction. Work with polymorphic behavior.

Description This exercise starts where the previous exercise left off. The base class
Weapon and the derived classes Axe and Wand are functional; the
goal in this exercise is to improve their structure.

Steps 1. In the Weapon class, change the method protected int CalculateDamage()
to public virtual int DealDamage(). The body of the method should remain
the same.

2. In the Axe class, change the method public int DamageFromAxe() to
public override int DealDamage(). The body of the method must be
changed at bit (Hint: call base.DealDamage instead of CalculateDamage).

3. In the Wand class, change the method public int DamageFromWand() to
public override int DealDamage(). The body of the method must be
changed at bit (Hint: call base.DealDamage instead of CalculateDamage).

4. Before proceeding, think about what you have done in steps 1) to 3). Why
is it a good idea to define a method called DealDamage in the base class
AND both of the derived classes?

5. In the WeaponTester class, replace the two methods UseWand and Use-
Axe with a single method UseWeapon. The first parameter should now be
of type Weapon. The rest of the method should work in a way similar to
how UseWand and UseAxe works.

6. Still in the WeaponTester class, replace all usages of UseWand and Use-
Axe with usage of the new method UseWeapon (you can delete the two
original methods, to be sure you are not using them anymore). Run the
test, and see that it works as before.

7. In the new method UseWeapon, we call DealDamage on a variable of type
Weapon. Still, it seems like the versions of DealDamage defined in the
derived classes get called (as they should). Why does this happen? What
do we call this type of behavior?

50

Exercise OOP.2.4

Project RolePlayV23

Purpose Override existing methods in derived class

Description The project contains a working role-play system. Any character in the
game is represented by an object of the class Character.

Steps 1. Get an overview of the application. The central class is the Character class,
which implements a generic game character. Also note the code in
Program.cs, where two teams with two members are set up for battle.

2. In the Character class, open the region Virtual Properties and Methods.
Make sure you understand the purpose of these properties and methods.
Note that you must not change anything in the Character class when you
solve the next steps.

3. Create a class Defender, which derives from Character. A Defender has a
45 % chance of having the received damage reduced by 50 %. Implement
this in the Defender class by overriding relevant properties and methods
(i.e. the virtual properties/methods which are inherited from Character).
Once you have created the class, update the code in Program.cs to include
a Defender on each team.

4. Create a class Damager, which derives from Character. A Damager has a 40
% chance of dealing double damage. Implement this in the Damager class
by overriding relevant properties and methods (i.e. the virtual properties/
methods which are inherited from Character). Once you have created the
class, update the code in Program.cs to include a Damager on each team.

5. Reflect a bit on how we implemented the two derived classes. If we were
allowed to make changes to the Character class, could we then implement
the requirements from step 3) and 4) without having to create two new
derived classes?

51

Exercise OOP.2.5

Project SimpleGeometry

Purpose Override abstract methods. See polymorphic behavior in action.

Description The project contains the (abstract) base class Shape, with an abstract
property Area. The class also contains a static method FindTotalArea,
that should calculate the total area of a list of shapes. The project also
contains two derived classes Circle and Rectangle, which are not yet
complete.

Steps 1. Implement the property Area correctly in Circle and Rectangle, using the
available instance fields (if you need the value of π (pi), you can get it by
writing Math.PI).

2. In the Shape class, implement the FindTotalArea method correctly, such
that it finds the total area of a list of shapes.

3. Take a look at the code in Program.cs. It contains a small test of the
classes in the project. Make sure you understand what the test does.

4. Run the application, and see if the output matches your expectations.
5. Why is it possible for the FindTotalArea method in the Shape class to work

correctly, even though the Area property is defined as abstract?

52

Exercise OOP.2.6

Project FilteringV10

Purpose Use interfaces to generalize code

Description The project contains a class Filter, with a FilterValues method. The
method filters out values higher than 10 from a list of integers. The
project also contains an interface IFilterCondition.

Steps 1. Figure out how to use the interface IFilterCondition to change the Filter-
Values method, into a method that can filter a list of integers according to
any condition. That is, the condition itself has to somehow become a para-
meter to the method. Try out your solution with a couple of conditions.

2. Figure out how you can apply several filter conditions to a list in a single
method call.

3. Filtering is a very generic operation. Maybe some of the .NET collection
classes already support filtering…?

53

Exercise OOP.2.7

Project CarDealershipV05

Purpose Override methods from Object class.

Description The project contains a simple class Car, which contains a few proper-
ties. In Program.cs, we attempt to print out some Car objects, and
perform some comparisons between Car objects.

Steps 1. Run the program as-is, and observe the result. Can you figure out when
the comparisons return true?

2. In the Car class, uncomment the Equals method (only that method), and
run the program again. What has changed?

3. Uncomment the rest of the code in the Car class, and run the program
again. What has changed?

4. The printing of Car objects is still not very satisfying. In the Car class, over-
ride the ToString method, so that it returns a string giving a reasonable
description of the Car object (note that the ToString method should not
call Console.WriteLine; it should only return a string to the caller). Run the
program again, and see what difference it makes.

54

Exercise OOP.2.8

Project BankWithExceptions

Purpose Add exceptions and exception handling to a project

Description The project contains a class BankAccount. It defines a fairly straightforward bank
account, but there are a few restrictions in it (see the code). One restriction is that
the balance must not become negative.

The project also contains three additional classes:

• IllegalInterestRateException

• NegativeAmountException

• WithdrawAmountTooLargeException

They are all exception classes, i.e. they inherit from Exception. The specific pur-
pose of each exception class is described in the code. The BankAccount class
already uses the WithdrawAmountTooLargeException class, to prevent that the
balance becomes negative (see the Withdraw method)

Steps 1. Modify the code in the BankAccount class, such that the additional excep-
tion classes are used properly.

2. Study the code in Program.cs. Make sure you understand why the try-
catch statements are included in the code.

3. Run the application, and test that the exceptions are now thrown and
handled properly.

55

Exercise OOP.2.9

Project GenericRepository

Purpose Create and use a Repository class based on Generics

Description The project contains three simple domain classes Car, Employee and
Computer, and two repository classes CarRepository and Employee-
Repository.

Steps 1. Examine the implementation of CarRepository and EmployeeRepository.
Take note of the similarities and differences between the classes.

2. There is currently no repository class for Computer. The next step is there-
fore to create a repository class for storing Computer objects. You can
choose between two paths:

a. The Path of Darkness: Create a class named ComputerRepository,
copy/paste code from one of the existing repository classes into
the new class, and modify it to be able to handle Computer
objects. Add code to Program.cs to test your new class.

b. The Path of Light: Create a type-parameterized class named
Repository, which can be used for any domain class. Rewrite the
code in Program.cs to use the new class for all three domain
classes.

3. We now also want to be able to print out the content of (i.e. the objects
stored in) a repository. Add this functionality to your repository class(es)
by adding a method named PrintAll, and use it to print out the content of
all three repositories.

4. We now also want to be able to retrieve the number of objects stored in a
repository. Add this functionality to your repository class(es) by adding a
property named Count.

5. Add a new domain class Phone, and repeat steps 2, 3 and 4 again. If you
chose the Path of Darkness, feel free to reconsider your allegiance…

56

Exercise OOP.2.10

Project GenericsDogsAndCircles

Purpose Increase cohesion and decrease coupling in the given project, by
adding a type-parameterized class

Description The project contains two unrelated domain classes Dog and Circle.
The project also contains the class ObjectComparer, which contains
methods for finding the “largest” Dog and Circle object out of three
given objects.

Steps 1. Examine the three given classes, with particular focus on the ObjectCom-
parer class. What are the problems with this class?

2. Let Dog inherit from IComparable<Dog> and implement the CompareTo
method, as described in the notes. Compare according to Weight.

3. Let Circle inherit from IComparable<Circle> and implement the Compare-
To method, as described in the notes. Compare according to Area.

4. Add a new class BetterObjectComparer to the project. The class should
take one type parameter T, and have the constraint where T :
IComparable<T>

5. Implement a method Largest, that takes three parameters of type T, and
returns a reference to the “largest” object (hint: remember that you can
now call CompareTo on a domain object, with another domain object as
argument).

6. Rewrite the test code in Program.cs to use the new BetterObjectCompa-
rer class. Test that your new code works as expected.

7. Why does this approach decrease coupling? Is there any coupling left
between BetterObjectComparer and the domain classes?

57

Exercise OOP.2.11

Project GenericsDogsAndCircles (same project as used in previous exercise)

Purpose Achieve further decoupling by using the IComparer<T> interface.

Description The project starts out just in the previous exercise, with two domain
classes Dog and Circle, and the ObjectComparer class.

Steps 1. Add a class DogCompareByHeight, which inherits from IComparer<Dog>.
Implement the Compare method as outlined in the notes, and compare
dogs by Height.

2. Add a class CircleCompareByX, which inherits from IComparer<Circle>.
Implement the Compare method as outlined in the notes, and compare
circles by X (x-coordinate).

3. Add a class EvenBetterObjectComparer. Note that the class does not need
any type parameters.

4. In the EvenBetterObjectComparer class, implement a method Largest<T>
(i.e. a method which takes a type parameter), which takes three para-
meters of type T and one parameter of type IComparer<T>. The method
should return a reference to the “largest” object (hint: use the Compare
method, which is available on the parameter of type IComparer<T>).

5. Rewrite the test code in Program.cs to use the new EvenBetterObject-
Comparer class. Test that your new code works as expected.

6. What are the advantages of this solution, compared to the BetterObject-
Comparer used in the previous exercise (Hint: Do the Dog and Circle
classes need to implement any interfaces now)?

58

Exercise OOP.2.12

Project GenericsVariance

Purpose Illustrate practical benefits from declaring type parameters as co-
variant or contra-variant

Description The project contains a simple class system for animals: An Animal
base class, and two derived classes Bird and Cat. Furthermore, the
project contains interfaces and classes for collections and collection
processing.

Steps 1. Examine the two interfaces ICollectionGet<T> and ICollectionSet<T>. Pay
particular attention to how the type parameter T is used in each interface.

2. Examine the class Collection<T>. It is a very simple collection class, that
implements the two interfaces mentioned above.

3. Examine the AnimalProcessor class, which contains four methods. Pay
particular attention to the type of the parameter to each method, and to
the operations performed inside the methods.

4. Now open Program.cs, and examine the code. Notice the commented-out
code, which contains 8 method calls (Case A to H). Before un-commenting
the code, see if you can work out which method calls are valid, and which
are not (Hint: Pay close attention to the specific type of the parameter in
each call).

5. Un-comment the code. How many cases did you get right?
6. Now open the ICollectionGet<T> interface. Declare the type parameter T

to be co-variant, by adding the keyword out just before the T, like this:
ICollectionGet<out T>.

7. Go back to Program.cs. Which case(s) that were previously invalid are now
valid? See if you understand why…

8. Now open the ICollectionSet<T> interface. Declare the type parameter T
to be contra-variant, by adding the keyword in just before the T, like this:
ICollectionSet<in T>.

9. Go back to Program.cs. Which case(s) that were previously invalid are now
valid? See if you understand why…

10. Two cases remain invalid. Do you think we in any way could fix this by
further adjustments of the interfaces?

11. Since the Collection class implements both ICollectionGet<T> and
ICollectionSet<T>, wouldn’t it be easier just to have a single interface
ICollection<T>, containing all methods from the two interfaces? What
would the consequences be?

59

Exercise OOP.2.13

Project LambdaAnimals

Purpose Write a couple of small lambda expressions, and use them to filter out
certain items in a collection

Description The project contains a single class Dog. In Program.cs, a number of
Dog objects are created and inserted into a List<Dog>. A method
ConditionalPrint is also defined, which takes a list and a filtering
condition as arguments.

Steps 1. At the indicated places in the code, call ConditionalPrint with a suitable
lambda expression as argument, i.e. an expression which evaluates to true
according to each of the three descriptions in the comments.

2. Create a new method ConditionalPrint2, which takes two lambda expres-
sions as arguments. It should only print out those items that match both
lambda expressions.

3. Imagine we have a list of conditions (in the form of lambda expressions)
that we wish to use for filtering. See if you can create a MultiConditional-
Print method for that purpose.

60

Exercise OOP.2.14

Project ClockV20

Purpose Use events to connect two domain objects.

Description The project contains two classes:

• PulseGenerator: This class can generate an event at regular
time intervals, and allow other objects to be notified of these
events.

• Clock: This class simulates a simple 24-hour clock

Steps 1. Study the PulseGenerator class. Note in particular the Pulse event. What
methods (with regards to parameters and return values) can be attached
to this event?

2. Study the Clock class. Note in particular the methods Tick and PrintTime.
How do you think they will be related to the Pulse event?

3. In Program.cs, a PulseGenerator object is created. Further down, the
method call theGenerator.Start(200) is invoked. Between those two lines,
create a Clock object, e.g. with a Danish text.

4. Just after creating the Clock object, attach the relevant methods from the
object to the Pulse event on the PulseGenerator object.

5. Start the application, and see if the clock progresses as expected.
6. Create some additional Clock objects with different texts – and perhaps

different tick factors – and attach them to the Pulse event.
7. Start the application again, and see if the additional clock objects behave

as expected.

61

Exercise OOP.2.15

Project StockTrade

Purpose Use events to connect various domain objects.

Description The project contains classes for (very simplified) simulation of stock
trading. Some objects will generate events, while other objects will
need to be notified of these events.

Steps 1. Study the TradeLog class – it is quite simple ☺.
2. Study the PulseGenerator class. This class can generate an event at regu-

lar time intervals, and allow other objects to be notified of these events.
3. Study the Stock class. It simulates a real stock, including price changes.

Notice the method GenerateNewPrice. Who do you think should call this
method? Also notice the event PriceChanged. What is it used for?

4. Study the class StockTrader. It simulates a real stock trader, in a very
simplified way. Note the method DoTrade. How is this method related to
the PriceChanged event in the Stock class?

We now want to connect the pieces to create a stock trade simulation. This is
done in Program.cs.

5. After the creation of the PulseGenerator object – but before the call of
thePulseGenerator.Start – create a few Stock objects. Choose some
reasonable upper and lower limits for stock prices.

6. Create some StockTrader objects. Each stock should be traded by at least
one stock trader.

7. Make sure that the Stock objects have their GenerateNewPrice method
called, whenever the PulseGenerator object generates a Pulse event.

8. Make sure that the StockTrader objects are notified about changes in
stock prices for the relevant stocks.

9. On each Pulse event, print out the current price of all stocks (hint: Create a
lambda expression which prints out the stock prices, and attach it to the
Pulse event).

10. On the LastPulse event, print out the entire trade log.
11. Run the application. Check to see if the trades obey the limits set for each

stock trader.
12. See if you can extend the stock trader model, maybe by letting each stock

trader trade more than one stock, have more advanced criteria for buying
or selling, etc..

