

Object-Oriented Pro-
gramming with C#
Programming, Part II

By Per Laursen
08-08-2022

1

INTRODUCTION ... 3

CONDITIONAL STATEMENTS .. 4

The if-statement ... 4

The if-else statement .. 6

The multi if-else statement ... 9

The switch statement ... 11

Nullable value types (a slight detour) ... 12

REPETITION STATEMENTS ... 15

The while-loop .. 15

The for-loop .. 19

DEBUGGING .. 21

INTRODUCTION TO DATA STRUCTURES ... 24

Arrays (and why you should not use them…) ... 24

The List class ... 29

The Dictionary class .. 32

Enumerations .. 36

CODE QUALITY, PART III (KEEPING YOUR CODE DRY) ... 37

DRY and values .. 37

DRY and instance fields ... 39

DRY and methods .. 39

DRY and classes (and a brief introduction to Inheritance).. 42

When does code become DRY? .. 45

EXERCISES .. 47

Pro.2.1 ... 47

Pro.2.2 ... 48

Pro.2.3 ... 49

2

Pro.2.4 ... 50

Pro.2.5 ... 51

Pro.2.6 ... 52

Pro.2.7 ... 53

Pro.2.8 ... 54

Pro.2.9 ... 55

Pro.2.10 ... 56

Pro.2.11 ... 57

Pro.2.12 ... 58

Pro.2.13 ... 59

Pro.2.14 ... 60

Pro.2.15 ... 61

3

Introduction

So far, we have only learned about a few types of individual C# statements, which we
can combine to sequences of statements. Such a sequence of statements will always
be executed in the same order. That is obviously a severe limitation – it is very easy
to imagine some business logic that involves choices: If a certain condition is fulfilled,
we will perform certain actions; if the condition is not fulfilled, we perform different
actions, or maybe no actions at all. We therefore need additional C# statements that
enable us to implement such choices in C# code. Such statements are of course avail-
able, and are in general known as control statements. These statements control the
“flow of execution” of the other statements, and enable us to create much more
sophisticated code.

The two main categories of control statements are

• Conditional statements

• Repetition statements

4

Conditional Statements

In the category of conditional statements, we find

• The if-statement

• The if-else statement

• The multi-if-else statement

• The switch statement

As you can probably tell from the naming, the first three statement types are essen-
tially variations over the same format, while the switch statement is fundamentally
different.

The if-statement

As stated above, we will need to be able to implement logical conditions, if we want
to implement non-trivial logic in C#. The if-statement is the first tool for this. The syn-
tax for an if-statement is quite simple:

if (condition)
{

}

An if-statement always contains three defining elements:

• The keyword if, followed by

• A pair of parentheses, containing a logical condition (for completeness, note
that the word condition is not a C# keyword; it just indicates where the con-
dition should be written)

• A code block, inside the curly brackets { and }. A code block is essentially the
same thing as a method body, i.e. a sequence of C# statements.

The most interesting feature is the condition. A condition is in this context a logical
condition, which in plain terms is “something that is either true or false”. We have
seen such a thing before: a logical expression. That’s what a condition is: it is a logical
expression, that will evaluate to either true or false. The expression itself can be very
simple or very complex, but whenever the “flow of execution” reaches the condition,
the logical expression will be evaluated.

5

If the logical expression evaluates to true, the statements in the code block will be
executed. We should also note that the statements are executed once (we will later
see why this is important to remember). If the logical expression evaluates to false,
the entire code block is skipped! The condition is thus a sort of “gatekeeper”; it will
only allow the “flow of execution” to enter the code block, if the condition is true.

What happens after an if-statement? When the if-statement is done – which may or
may not include execution of the statements in the code block – the first statement
following the if-statement is executed. In that sense, nothing is changed. We still
execute statements in the order they are written, but the statements themselves can
now be more complex.

A very simple example of how to use an if-statement is given below:

int age = 17;

Console.WriteLine("Starting to check age...");

if (age < 18)
{

Console.WriteLine("You are still a child...");
}

Console.WriteLine("Finished checking age");

In a more realistic situation, we could imagine that age is read from an external
source. If we run the above code, the output will be:

Starting to check age...
You are still a child...
Finished checking age

Why is the code block executed? When the if-statement is reached, the value of age
is 17, so the condition becomes: 17 < 18. That is indeed true, so we enter the code
block and execute the statements inside it (in this case only a single statement).

If we run the same code again, but change the value of age to 19, the output is:

Starting to check age...
Finished checking age

In this case, the condition evaluated to false, so the code block was skipped.

6

If the above code was part of a real system, we would probably like the system to tell
us the result of the check, no matter what the result is. We could do this by using two
if-statements:

int age = 17;

Console.WriteLine("Starting to check age...");

if (age < 18)
{

Console.WriteLine("You are still a child...");
}

if (age > 18)
{

Console.WriteLine("You are an adult!");
}

Console.WriteLine("Finished checking age");

That seems to solve the problem, since the application now provides an answer in all
cases…or does it? It is probably easy to see that we can never have a situation where
both possible answers are given, since both conditions cannot be true at the same
time. Is there a situation where no answer is given? Yes, if the value of age is exactly
18. In that case, both conditions will be false, so no answer is given.

Even for such a simple situation, it can be a bit difficult to spot the error. What we
really want is to be absolutely sure that exactly one answer is given, no matter the
value of age. Sure, we could modify the second condition to (age >= 18), but a better
(less error-prone) solution is to use a slightly extended version of the if-statement,
called the if-else statement.

The if-else statement

The syntax for the if-else statement is:

if (condition)
{

}
else
{

}

7

Compared to the if-statement, we have added two elements:

• The else keyword

• An additional code block

The functionality is probably not too hard to guess: If the condition evaluates to true,
we execute the first code block only. If the condition evaluates to false, we execute
the second code block only. We are thus guaranteed that exactly one of the two code
blocks is executed; never both, never none! This construction is less error-prone than
the construction using two if-statements, and it is strongly recommended to use the
if-else statement, if you wish to execute exactly one of two code blocks, depending
on the value of a logical expression.

For completeness, it should be mentioned that if – as in the example above – you
have code blocks containing just a single statement, you can omit the curly brackets,
and write the code like:

if (age < 18)
Console.WriteLine("You are still a child...");

else
Console.WriteLine("You are an adult!");

Even though this is syntactically valid code, it is generally recommended to use the {}
delimiters, since it makes the code easier to read. Also, be aware that the below code
is also syntactically valid:

if (age < 18);
Console.WriteLine("You are still a child...");

If you run this code, the code will always print the you are still a child… message, no
matter the value of age. Note the highlighted semi-colon (;) after the condition… This
is allowed, but fairly meaningless. The code now checks the condition…and then does
nothing. However, the semi-colon indicates that the if-statement is now completed,
so the next statement is not considered part of the if-statement any more… An error
like that can be hard to spot, but Visual Studio is clever enough to identify it, and puts
up a do-you-really-mean-that warning.

Concerning use of semi-colon, it might also seem strange that if-statements and if-
else statements are not completed with a semi-colon. Whenever you use a code
block with the {} delimiters, it is not required to use semi-colon to end the statement.

8

Finally, you may wonder if there are any restrictions on the type of C# statements,
we can place inside a code block being part of a conditional statement. There isn’t
any. Inside the code block of an if-statement, you could for instance put…another if-
statement! Imagine you want to check if somebody is a teenager:

if (age > 12)
{

if (age < 20)
{

Console.WriteLine("You are a teenager");
}

}

In order to enter the outermost code block, age must be larger than 12. Once inside
that block, age must also be smaller than 20 to enter the innermost code block. Only
then will the message be printed.

By adding if-statements to our repertoire of C# statements, we can suddenly create
quite complex methods, by combining statements to whatever “depth” we need. In
the above case, it would however be a better solution simply to use a single if-state-
ment, with a somewhat more complex condition:

if ((age < 20) && (age > 12))
{

Console.WriteLine("You are a teenager");
}

The logic is, of course, the same. Exactly how to “balance” a complex conditional
statement between complex conditions and nested statements is mostly a matter of
taste and readability.

You often encounter situations where you need to perform a very simple action,
depending on whether or not a condition is true or false. This could be assigning a
value to a variable, where the value will depend on the condition, like:

9

int age = 15;
string message = "You are ";

if (age < 18)
{

message = message + "a child.";
}
else
{

message = message + "an adult.";
}

In such cases, it can be convenient to use the so-called ternary operator:

 condition ? expression1 : expression2

This reads: if the condition is true, return the value of expression1, else return the
value of expression2. If we rewrite the above if-statement using the ternary opera-
tor, we get:

message = message + ((age < 18) ? "a child." : "an adult.");

This is definitely more compact. The logic is exactly the same, so using the ternary
operator is mostly a matter of taste.

The multi if-else statement

The third variant of if-statements is useful in situations where you wish to choose
between several (i.e. more than two) alternative actions. Suppose we need to find
the appropriate mark for a test, where the score for the test is given as a percentage,
i.e. a number between 0 and 100. The logic for finding the mark could be like:

Lower limit Upper limit Mark

0 39 D

40 69 C
70 89 B

90 100 A

This logic can be written as a (somewhat complex) nested if-else-statement:

10

if (score >= 90)
{

Console.WriteLine("Mark is: A");
}
else
{

if (score >= 70)
{

Console.WriteLine("Mark is: B");
}
else
{

if (score >= 40)
{

Console.WriteLine("Mark is: C");
}
else
{

Console.WriteLine("Mark is: D");
}

}
}

Feel free to check the logic yourself… This code is perfectly fine, but can be a bit hard
to understand due to the deep nesting of statements. The multi-if-else statement en-
ables you to formulate the code slightly different:

if (score >= 90)
{

Console.WriteLine("Mark is: A");
}
else if (score >= 70)
{

Console.WriteLine("Mark is: B");
}
else if (score >= 40)
{

Console.WriteLine("Mark is: C");
}
else
{

Console.WriteLine("Mark is: D");
}

The code does exactly the same as the previous example, but is easier to read (at
least the author thinks so ☺). If you compare this statement with the simple if-else
statement, we have actually just added a number of else-if blocks between the if-
part and the else-part. An important detail to remember is that a multi-if-else
statement must end with an else-part.

11

Finally, we note that even though it is possible to formulate “overlapping” conditions
(such that more than one condition can be true at the same time) in a multi if-else
statement, it is still only one code block that will be executed; the first code block
where the corresponding condition is true, or alternatively the else code block.

The switch statement

In some situations, the business logic has a nature where there is a distinct outcome
for certain specific value of a variable. Maybe the logic for calculating child support
could be like this:

Number of children Child support (kr. per month)

0 0
1 1200

2 2000

3 2600

>3 3000

There is no simple formula for this dependency, so we would probably implement
this logic by using a multi-if-else-statement, in a manner similar to the previous
example. However, the switch-statement allows us to “directly” choose an alter-
native based on a specific value:

switch (noOfChildren)
{

case 0:
childSupport = 0;
break;

case 1:
childSupport = 1200;
break;

case 2:
childSupport = 2000;
break;

case 3:
childSupport = 2600;
break;

default:
childSupport = 3000;
break;

}

12

The important features of a switch-statement are:

• At the outermost level, we use the keyword switch, followed by the expression
(typically just a variable) that we “switch on” in parentheses.

• We write a case-statement for each of the cases that we wish to handle indivi-
dually, using the keyword case followed by the actual value, followed by “:”
(colon, not semicolon!)

• Each case contains a sequence of statements, concluded by a break-statement.
The break-statement indicates that no more of the code within the switch-
statement should be executed. It is perfectly legal to include if-statements, etc.
in the code before the break statement, but often you will just put a single line
of code. If you need many lines of code for each case, a switch-statement may
not be the best choice.

• If the value is not handled explicitly by a matching case-statement, it is caught
in the default-statement, and the lines of code specified here are executed.

Again, there is nothing you can do in a switch-statement that you cannot do in a if-
statement; they are logically equivalent. In general, when dealing with conditional
statements, you should choose the type of statement that you feel is a best fit for the
problem at hand, and makes the code as easy as possible to understand.

Nullable value types (a slight detour)

At the very beginning of these notes, we discussed so-called primitive data types like
e.g. int and bool. These are also known as value types, which are fundamentally
different from references types w.r.t. how they are stored in memory. Variables of a
class type are of the reference type, i.e. they refer to where the data itself is stored,
while variables of value type hold the data itself. A consequence of this is that a vari-
able of reference type may refer to nothing at all, which led to the introduction the
keyword null.

We may from time to time be in a situation where a simple type is the obvious choice
for representing some sort of simple data – e.g. a int for representing a test score –
but we also need to be able to represent the situation where no specific value is
available at the time the variable is created. As an example, consider a very simplistic
class Student, defined like this:

13

public class Student
{
 public string Name { get; set; }
 public int TestScore { get; set; }

 public Student(string name)
 {
 Name = name;
 TestScore = ...; // What should we choose...?
 }
}

The setup is as follows: a student can be enrolled in a school with just a name, since
the school will then at some point after enrollment conduct a test for the student,
which will then produce a test score. We thus need to be able to create a Student
object without having a test score available. The big question is then: what value
should we initially assign to TestScore…?

If the test results in, say, a percentage score between 0 and 100, we could perhaps
just assign -1 as the initial value, and subsequently interpret -1 as meaning “no
value”. This is feasible, but tends to be somewhat fragile… What if we at some point
decide to employ a different scale, say from -1000 to 1000? Could we then run into
problems? It would be nice if we could truly assign “no value” to such a property.
This becomes possible using nullable value types.

A nullable value type works just as an ordinary value type, except that we can actu-
ally assign the value null to a variable of that type. In the class definition above, we
would need to make a very small change:

public class Student
{
 public string Name { get; set; }
 public int? TestScore { get; set; }

 public Student(string name)
 {
 Name = name;
 TestScore = null;
 }
}

The “?” symbol added after the type name signifies that this variable is “nullable”,
and the assignment in the constructor now becomes valid. So far, so good…

14

This new flexibility does come at a price. Consider the below code, which would have
worked – or rather, at least be compilable – using ordinary simple types:

Student ann = new Student("Ann");
Student beth = new Student("Beth");

int avgScore = (ann.TestScore + beth.TestScore) / 2;

Visual Studio will now report errors, like “cannot implicitly convert int? to int”, and
“nullable value type may be null”. Visual Studio is essentially saying “this will not work
if any of these values are null”, which does make sense.

Then what…? Well, now that we know about conditional statements, we actually
have ways to handle this (this is also why the introduction of nullable value types was
postponed to this point). It is – of course – possible to check if a nullable variable has
a value assigned to it or not. Two properties Value and HasValue are available on a
nullable value type, making it possible to write code as this:

int avgScore = (ann.TestScore.HasValue && beth.TestScore.HasValue) ?
 (ann.TestScore.Value + beth.TestScore.Value) / 2 :
 0; // ... or what?

We use the trinary operator introduced earlier in this chapter, so the code reads “If
both variables actually have a value assigned to them, use those values to calculate
the average, otherwise return zero”. It can be debated if the handling of the “other-
wise” case is sensible, but that’s not the main point here. The point is just to make
you aware that these nullable value types are available to you, if they seem to be the
best fit for your problem at hand. Still, using them often opens up a number of issues
w.r.t. how to handle cases where no value is assigned. Use them carefully…

We will not be using nullable value types to any great extent in the remainder of
these notes.

15

Repetition statements

The various conditional statements allow us some control of the flow of execution,
but mostly in the sense that we may or may not execute certain sections of code. A
very useful ability would be the ability to repeat execution of a code block, as long as
some condition is true. The so-called repetition statements enable us to do just that.
Just as for conditional statements, there are a few variants of repetition statements
to choose from, but they are essentially all variations over the same theme: repeat
execution of a block of code, as long as a certain condition is true.

The two most common types of repetition statements are:

• The while-statement (or while-loop)

• The for-statement (or for-loop)

A third type called foreach-loop is also quite useful, but only in relation with so-called
collections, which we will discuss later.

The while-loop

The syntax for the while-loop is quite simple, and is almost identical to that of the if-
statement:

while (condition)
{
}

Syntactically, the only difference is the keyword while (instead of if). Apart from that,
the while-loop consists of the same three elements:

• The keyword while

• A logical condition

• A code block

The functionality is different, though. The if-statement will – depending on the value
of the logical expression in the condition – execute the code block one or zero times.
The while-statement will execute the code block several times, more specifically as
long as the condition is true. The word “several” is a bit misleading; the code block
might only be executed once, or not at all! The exact number of iterations – meaning
the number of times the code block is executed – depends on the condition.

16

The exact way a while-loop works is probably best described by a number of steps:

1. The “flow of execution” reaches the while-loop.
2. The condition is evaluated, giving either true or false.
3. In case of true:

a. the code block is executed, and
b. the flow of execution returns to step 2.

4. In case of false: the while-loop is considered completed, and the flow of
execution will continue with the first statement after the while-loop.

The entire difference between a while-loop and an if-statement lies in step 3b. If you
remove step 3b from the above, you have a precise description of an if-statement!
The ability to send the flow of execution back to a point it has already passed, makes
all the difference.

A valid concern here is how you ever get out of such a loop again! Won’t the condi-
tion keep on being true, if it was true the first time around? That is indeed possible,
and the flow of execution would then be stuck in an infinite loop. The only way to
break out of such an infinite loop is to terminate the application! To avoid this situa-
tion, something must happen inside the code block that can affect the value of the
condition. This is a very important point about any type of repetition statement.

Let’s see an example of a fairly simple while-loop:

int number = 1;
while (number < 5)
{

Console.WriteLine($"The value of the number is {number}");
number = number + 2;

}

If you follow the steps above, you should be able to work out how many times the
code block is executed: two times. The first time the condition is evaluated, the con-
dition is 1 < 5, which is true. The message is printed, and the value of number is then
increased by 2. Next time around, the condition is 3 < 5, which is also true. We do the
same steps again. Third time around, the condition is 5 < 5, which is false. So, we do
not do a third iteration through the loop. The loop has now finished.

17

This is of course a simple, not very useful example, but we can also use it to illustrate
how easy it is to get into trouble. Consider the code below:

int number = 1;
while (number < 5)
{

Console.WriteLine($"The value of the number is {number}");
}

It looks fairly innocent, but if we try to run it, we will be stuck in the dreaded infinite
loop. We took out the statement that increased the value of number, so the condi-
tion will now remain true forever…

Just as for the conditional statements, there are no restrictions on the code you can
put into a while-loop code block. You can put a while-loop inside a while-loop, if that
is what your logic dictates. Nested loops are quite common in programming.

The example above is a so-called counter-controlled while-loop; we use the numeric
value of some variable to check if we should do another iteration through the loop.
This is typically used when the while-loop should be repeated a fixed number of
times, or at least a numeric value known when the start of the loop is reached.

A different situation arises if you want a while-loop to continue until a certain
“event” occurs. What does that mean? Suppose we have defined a class Reader,
which can read a single character from the keyboard (i.e. the key the user presses).
We could then imagine code like the below:

Reader myReader = new Reader();
string keyPressed = "";

while (condition)
{

keyPressed = myReader.ReadFromKeyboard();
Console.WriteLine($"You pressed {keyPressed}");

}

The idea is that ReadFromKeyboard() will wait until the user has pressed a key; when
that happens, the key is read and stored in keyPressed. We then keep doing this,
until…what? We could perhaps do it, say, ten times, but what we really want is for
the user to tell us when to stop. Of course, the user could just terminate the applica-
tion, but if we want the user to be able to stop the loop, we could do this by defining
that a certain value of keyPressed means “stop”. We could e.g. choose the character
‘q’ (meaning “quit”). The code would then become:

18

Reader myReader = new Reader();
string keyPressed = "";

while (keyPressed != "q")
{

keyPressed = myReader.ReadFromKeyboard();
Console.WriteLine($"You pressed {keyPressed}");

}

This means: as long as keyPressed is not equal to ‘q’, we keep on iterating (and
thereby obtaining a new value from the user). Of course, we have no way of knowing
if this will happen after one, four or 427 iterations, so we cannot use a counter-
controller while-loop here. The above construction is called a sentinel-controlled
while-loop. You can think of the condition as a “sentinel” that will only allow further
iteration if a variable has (or does not have) a specific value. Also, the loop itself does
not have control over the variable, but retrieves it from some outside source.

When you are new to loop statements, it can be easy to forget something. All loops
do however have the below elements in common:

• Initialization: Before the loop itself is entered, we usually – but not always –
initialize some variable that is also used as part of the condition.

• Condition: The logical condition itself, which is evaluated before performing
another iteration of the loop.

• Change: Since the condition itself is fixed, at least one of the values of the vari-
ables in the condition must have the chance to change during an iteration.
Otherwise, we have an infinite loop. Formally put, the probability that some-
thing changes must be larger than 0 (zero).

• Action: The set of statements that is executed during an iteration, i.e. those
statements that perform the actual “action” we want to happen during each
iteration. This could e.g. be to print a line on the screen.

You can use this as a “checklist” when creating a loop statement, to be sure that you
have considered all the relevant elements.

19

The for-loop

Let’s take a look at a very common, counter-controlled while-loop. Some comments
have been added to the code, to identify the four elements we listed above:

int number = 1; // Initialization
while (number < 5) // Condition
{

Console.WriteLine(number); // Action
number = number + 1; // Change

}

This type of while-loop is very common: do something a certain number of times,
using an integer variable to track how many iterations we have performed. The loop
statement known as the for-loop is tailored to this scenario. A for-loop implementing
the same logic as the above while-loop looks like:

for (int number = 1; number < 5; number = number + 1)
{

Console.WriteLine(number);
}

If you compare this code to the previous code, you can hopefully see that we have
just rearranged the four elements; the elements themselves are the same. In gene-
ral, a for-loop has this structure:

for (initialization ; condition ; change)
{

Action
}

A for-loop and a while-loop are logically equivalent; there is nothing you can do with
a for-loop that you can’t do with a while-loop. So why choose a for-loop over a
while-loop? It is mostly a matter of taste. The structure of the for-loop does perhaps
make it harder to forget one of the elements, since the for-loop looks a bit “odd” if
you remove one of the elements. Still, this is a subjective criterion.

A slight drawback of the for-loop could be, that it is less obvious what order the
operations are done in, and how often. Both are the same as for the while-loop: the
initialization is done once, as the first operation when the for-loop is reached. The
condition is then checked, and – if the condition is true – the code block containing
the action is then executed. After that, the change operation is done. The condition is
then checked again, and so forth.

20

At this point, it is also relevant to introduce an alternative way to change the value of
an integer variable. A very common format for the for-loop is this:

for (int number = 1; number < 5; number = number + 1)
{

// Action
}

Having a “counter variable” that simply counts the number of iterations performed –
and a corresponding condition that remains true as long as the desired number of
iterations has not been performed yet – is very common, and you will often see the
above written as:

for (int number = 1; number < 5; number++)
{

// Action
}

This is exactly the same logic as before, except that the new notation number++ is
used. This notation simply means: increase number by one. It may look confusing at
first, but since we very often need to increase an integer variable by one (also called
to increment the variable), you will soon appreciate it. Similarly, you can decrease
the value by one using the notation number--.

Finally, you should know that none of the elements in the for-loop are mandatory.
You could in principle write a for-loop like:

for (;;)
{

// Action
}

This is a legal for-loop, that will iterate forever…

Are there any general guidelines for choosing between a while-loop and a for-loop?
Not really – as said before, it is mostly a matter of taste. Many prefer to use a for-
loop when the iteration is controlled by a simple counter variable, and to use a while-
loop when you have a sentinel-controlled scenario. Choose the loop type you are
most comfortable with, but try to choose in a consistent manner.

21

Debugging

As soon as we start to use conditional and repetition statements, we can start to
create much more interesting – and complex – code. This makes it much more fun to
code, but it also makes it harder to get the code right the first time. You will now
start to find yourself in that somewhat frustrating situation where:

• Your code is syntactically correct (and can compile)

• The code seems correct when you read it

• The code does not produce the results you expect!

No matter how much effort you put into the design, and no matter how brilliant a
programmer you become, you will inevitably spend a large part of your programming
career in this situation. We therefore need to know about tools and techniques to
help us find errors (or bugs, as they are often called) in our code. This process of
finding and fixing bugs in computer programs is called debugging.

A first – and quite obvious – technique is simply to read the code closely once again.
In many cases, the bug is quite simple (like e.g. using a minus instead of a plus some-
where), and surprisingly many bugs can be caught this way. Even better is to try to
explain the code to someone else (even just to a teddy bear ☺); the process of trying
to state the intention of the code aloud will often reveal bugs.

If such manual techniques are not successful, you can add some statements to the
code, that print out useful information to the screen, e.g. inside a loop. It could be
the value of a variable that seems to cause the problem, like:

for (int divideBy = 10; divideBy >= 0; divideBy--)
{

Console.WriteLine($"Trying to divide by {divideBy}");
Console.WriteLine(100 / divideBy);

}

This technique can be helpful if the logic is not too complex, but it quickly becomes a
bit of a mess to add all these extra lines of code, and it is tedious to remove them
again. A slightly better technique is to use the built-in statement Debug.WriteLine
instead; this prints to the Output Window in Visual Studio instead, and only prints
when running the application in Debug mode. Still, adding and managing such
printing statements is a somewhat old-fashioned approach to debugging, and we will
generally try to avoid it.

22

A more powerful and elegant technique is to use the so-called integrated debugger,
which is part of Visual Studio. Almost all modern programming tools contain an inte-
grated debugger.

The integrated debugger can help with debugging in a lot of ways, and getting
familiar with the debugger is definitely a worthwhile investment if you are serious
about programming. Still, you can get quite far with knowing just a few things.

A very useful concept is a breakpoint. A breakpoint is a position in the code (a speci-
fic statement) that you choose. When you then run the program, the program will
pause (not terminate!) at the breakpoint. You can think of it a pausing the “flow of
execution” at this specific point in the code. You choose the location of a breakpoint
simply by clicking in the leftmost part of the code editing window. A red dot will then
appear (you can remove the breakpoint simply by clicking on it again):

If you run the application now, the flow of execution will pause at the breakpoint,
more specifically just before that line of code gets executed.

What now? One very useful feature is the ability to inspect the current values of all
variables simply by hovering the mouse cursor over the variable in the code editor
window. This is in itself quite useful, since you may often find that the values are
different from what you expected. If you then want the application to continue the
execution from the breakpoint, you simply click the green triangle button, just as
when starting the application (note that the text at the button now says Continue).
Note that you can place multiple breakpoints in the code; clicking Continue will then
resume execution until the next breakpoint is reached.

The above features – being able to pause the flow of execution at a breakpoint, and
inspect variable values by hovering over them – are by themselves extremely useful
for debugging. Getting used to using this feature will save you a lot of time. The next
useful feature to know is the ability to “step” through the execution of the applica-
tion. When you reach a breakpoint, a small set of buttons appear (they can also be
found under the Debug menu):

23

There are a few more options available, but these three are the most important for
now. These three options (and corresponding buttons) are called:

• Step Into

• Step Over

• Step Out

These “step” buttons enable you to advance the flow of execution by a single state-
ment at a time, just as if all lines of code contained breakpoints. The interesting
question is then: what is the next statement to be executed?

The obvious answer would be the next line of code in the method where we placed
the breakpoint. If you click the Step Over button, the arrow marking the current posi-
tion in the code will indeed advance to that statement (note that this need not be the
line that visually follows in the code, since we might have conditional statements,
loops etc. in play here).

But what if the statement we are currently at is a method call? If we want to investi-
gate what happens inside that method call, we can use the Step Into option. This will
take us into the code for the called method. In this way, you can step infinitely deep
into methods being called by other methods (cue music from Inception...).

If you step through all the statements in the called method, you will eventually be
returned to the calling method – if you want to be taken immediately back to the
calling method, you can use the Step Out option, which then finishes the method call.
Using these three ways of stepping through the code is also extremely useful, since
you can follow the flow of execution in every detail. In this way, you will often find
that the code doesn’t behave as you expected.

In total: as soon as your code grows beyond trivial, it is a really good investment to
familiarize yourself with the most fundamental features of the integrated debugger.
The best way to learn this is – as always – to practice! There are more advanced
features in the debugger than mentioned here, but get some practice in using the
features described here, before diving deeper into the capabilities of the debugger.

24

Introduction to Data structures

Learning about control statements enable us to go far beyond simple, sequential bits
of code. Likewise, we now need to go beyond simple variables, that can only contain
a single value. In many situations, we need to handle multiple values that have some-
thing in common. Examples could be:

• Names of students in a class

• Temperature measurements over a long period

• Information about cars that can be rented at a Car Rental Service

…and so on, and so on. We could in principle just declare a lot of individual variables
for e.g. holding the names of students, but a such an approach quickly becomes very
clumsy to implement. Therefore, we need ways to handle such collections of data
more elegantly. Fortunately, all modern programming languages – C# included –
contain a number of ways to handle collections of data, by using so-called data
structures.

Arrays (and why you should not use them…)

One such data structure is the array. The array is a classic data structure, and it has
been around for much longer than Object-Oriented programming. Therefore, it
doesn’t quite “fit” into such a language as C#, since the syntax for using it has a non-
Object-Oriented flavor to it. So why learn about it at all? Even if better alternatives
do exist, you may still encounter use of arrays in existing code, and certain parts of
the array syntax has leaked into more modern data structures. So, knowing about
arrays is still useful background knowledge to have as a programmer.

Before diving into the syntax for arrays, we describe them on a conceptual level first.
In essence, they are just a construction for handling a set of values of the same type
(e.g. int or string). We can think of an array as a line of boxes, into which we can put
a single value. Below is an array of integers:

index 0 1 2 3 4 5 6

value 34 -233 9801 67 2 -9582 770

Note that the “line of boxes” mentioned above is only the shaded part of the illu-
stration, in the row labeled value. So, we have a total of 7 integer values in this par-
ticular array. What is the index then? The index is the “address” of a specific element

25

in the array. When we put a value into the array, we have to specify which “address”
it should have. The index is exactly that. We can then use the index again, when we
wish to retrieve an element from the array. The index itself is just an integer number;
the only peculiarity is the fact that an array index always starts from 0 (zero). This
also means that in this particular array, the last element has index 6 (not 7)!

Let us now see how to use arrays in C#. More specifically, we need to be able to:

• Create an array

• Enter a value into an array

• Retrieve a value from an array

The syntax for array creation is the first place where the pre-OO nature of arrays start
showing. First, we need to declare a variable that can refer to an array:

int[] myFirstArray;

We deliberately used the phrase “refer to”, since an array is indeed an object, and a
variable of an array type is thus by-reference. This particular variable refers to an
array of int values. The important thing to notice here is the use of [], called square
brackets. A proper declaration of an array variable is thus the type for the values it
should contain, followed by [].

However, just declaring the variable does not create the array itself. Creating the
array looks like:

myFirstArray = new int[7];

This will create an array with 7 elements, that can contain values of type int. Again,
notice the somewhat odd syntax. We are indeed creating a new object here, by using
the new keyword. However, there is not as such a class corresponding to the array…

With this, we can start to use the array. If we wish to put a value into the array, we
must specify the index of the element into which we put the value:

myFirstArray[3] = 23;

This puts the integer value 23 into the element with index 3 (i.e. the fourth element
in the array). There is not more to it than that. If you wish to retrieve an element
from the array, you must again use the index:

26

int singleValue = myFirstArray[5];

The important thing to realize is this: once you specify an element in an array by its
index, that element can be used in exactly the same manner as a simple variable of
that type. You can use it in expressions, you can assign a value to it, and so on. If you
want to increase the value of an element by one, you can just write:

myFirstArray[4]++;

This is no different than writing e.g. age++.

In the above example, we just created an array of int values, with 7 elements. We did
not really specify the content of the array. Is the array then empty initially? No, since
the concept “empty” doesn’t quite make sense for an array. Once the array is
created, it immediately has the specified size, and the content of each element is
then interpreted as an int value. In C#, the elements in a array of numerical values
are set to 0 (zero) by default, so that will be the initial content of this array. If we
already know the initial values when we want to create the array, we can use a handy
syntax to put those elements into the array:

int[] myFirstArray = new int[] { 34, -233, 9801, 67, 2, -9582, 770 };

This will create an array with 7 elements and put the specified values into the array.
Neat!

So far, we have not gained that much as compared to using variables of simple types.
Arrays do however go hand-in-hand with repetition statements. Suppose we want to
print all the elements in an array. That is quite easy to do with a for-loop:

for (int index = 0; index < 7; index++)
{

Console.WriteLine(myFirstArray[index]);
}

That’s it! The variable index starts at 0, and keeps increasing until it reaches 7, where
the condition becomes false. Also, this code (almost) doesn’t change if we have an
array with 10000 elements instead of 7. The only small problem with this code is the
explicit use of the size of the array. If we do change the size of the array, we must
also change the condition in the loop. Can we avoid that? Yes, since you can retrieve
the length of the array from the array object itself:

27

for (int index = 0; index < myFirstArray.Length; index++)
{

Console.WriteLine(myFirstArray[index]);
}

This is a more robust style, since it is no longer necessary to change the condition, no
matter the size of the array.

The above is a simple – but still quite typical – example of how arrays are used: Do
some operation for each of the elements in the array (in this case: print them on the
screen). Since this usage pattern occurs so often, a variant of repetition loops have
been created just for this purpose, called a foreach-loop:

foreach (var item in myFirstArray)
{

Console.WriteLine(item);
}

Here you don’t even need to worry about array sizes, loop variables and so on: just
specify the name of the array, and what you want to do with each element. The
generic version of the foreach-loop looks like this:

foreach (var variableName in arrayName)
{
 // Whatever you want to do with the value
}

You can choose any variable name you prefer; it is just a “placeholder”, that will hold
the actual values from the array during the iterations. You may also have noticed the
use of the keyword var. Strictly speaking, you should also specify the type of the
placeholder variable. However, the compiler can figure out what the type should be
(it must be the same as the type of the elements in the array), so it “allows” you to
be a bit lazy. By using var, you are saying “you figure it out, compiler!”. The compiler
will protest if this is not possible ☺.

With arrays and loop statements (including the foreach loop), we can start to handle
collections of values instead of just single values. However, in a modern language like
C#, arrays will rarely be the best choice for such a task. Even though arrays are rather
easy to work with, they have several drawbacks:

28

The size of an array is fixed: When you create an array, you must specify its size. This
means that already at creation time, you must anticipate how many elements you
may need to store in the array. That is often impossible, or at least very uncertain.

What if the array is used in a school administration system? How many students must
it be possible to handle? 100? 10000? Who knows… You could then argue that you
should just create a “sufficiently large” array, maybe with one million elements. Is
that a problem? It could be, since you will then use a fixed-size chunk of memory for
this array, even though it may often be next-to-empty. Even though RAM is cheap
these days, we should still be wary of excessive memory consumption.

You can use array indices that are invalid: These is nothing stopping you (even
though Visual Studio will raise an eyebrow…) from writing a statement like:

myFirstArray[-2]++;

If you try to run this code, you will get an error (more specifically an exception, that
we will learn about later).

There is no clear definition of an “empty” element: We mentioned above that an
array of a numerical type will – unless told otherwise – be initialized with the value 0
(zero) in each element. Can we then assume that if an element contains the value 0,
it is considered empty? You could, but it’s a fragile strategy. What if 0 is also a valid
value? Maybe the array contains temperature measurements, and 0 may then be a
perfectly valid temperature. We might choose another value as indicating empty, but
that just shifts the problem. The core of the problem is that as soon as the array is
created, any content in an element is interpreted as being of the specified type.

There is no help with common tasks: Since the array is not really a class, there are no
methods available for various common tasks, like e.g. sorting the elements. It should
be mentioned that C# does contain an Array class, but this is more a collection of
various static methods that can be used on arrays, not part of the array as such.

In total, there is a variety of more modern classes available in C#, that are better
choices for handling collections of values. Certain very specific situations – e.g. where
the size of the collection will never change, and no sophisticated processing of the
items is needed – may still justify the use of arrays, but they are mostly a leftover
from the earlier days of programming. Still, some syntactical elements from arrays
are also found in more modern collection classes.

29

The List class

The .NET Class Library contains several classes for handling collections of values. The
List class is probably the class that has most in common with the classic array data
structure. However, the List class does not suffer from all of the drawbacks described
above. The purpose is similar to arrays: insert and retrieve values (or object referen-
ces) of a specific type. The syntax for creating a List object is:

List<int> myFirstList = new List<int>();

There are a couple of things to notice here:

• The statement creates a List object, that can hold a collection of int values. The
type specification goes between the pointy brackets <>, that follow right after
the List class name. The List class is a generic class; we will discuss generic
classes later, but for now we just note that this is the syntax we must use for
specifying the type of the items in the list.

• The List class is as mentioned part of the .NET Class Library, and is located in
the namespace System.Collections.Generic. This part of the library is automati-
cally included in the exercise projects. In older versions of Visual Studio – and
for certain other project types – you need to manually add a line at the top of
the file where the List class is used, looking like this:

using System.Collections.Generic;

Again; this is not necessary to do in the exercise projects, but still a useful thing
to know.

• We do not need to specify an initial size of the list! Upon creation, the list is in-
deed empty. Once we start adding items to the list, the size is increased accor-
dingly, and also decreased if items are deleted.

Having created the (initially empty) list, we can add items to it:

myFirstList.Add(982);

This is also quite different from the array style; here we use a method call in order to
insert a value. Note that there is no specification of the index. The Add method will
simply add the new item to the end of the list. If you at some point wish to insert an
item at a specific position, you can use the Insert method:

30

myFirstList.Insert(2,980);

This will insert the value 980 into the item at index 2. A very important point here is
that this may cause other items to be moved! Suppose the list looks like this before
the insertion:

index 0 1 2 3
value 34 -233 9801 67

After the insertion, the list will look like:

index 0 1 2 3 4

value 34 -233 980 9801 67

This is intentional, but is a feature that might surprise you if you are used to working
with arrays. Likewise, you can remove an item specified by index with the RemoveAt
method:

myFirstList.RemoveAt(1);

This will shrink the list, again with the consequence that items will be moved. The list
will change from:

index 0 1 2 3 4
value 34 -233 980 9801 67

to

index 0 1 2 3

value 34 980 9801 67

A list is thus much more “dynamic” than an array, and you cannot expect an item to
retain its original position. With regards to removing an item, you may wonder why
the method isn’t just named Remove. The List class does indeed contain a Remove
method – also taking a single argument – but this method will remove the first occur-
rence of the specified value. In this case, the method argument is thus interpreted as
a value, not an index! This can be somewhat confusing, and you should be sure to
understand the meaning of the method arguments before using the methods.

31

The List class contains a lot of additional methods, and we will only present a few of
them here:

Clear Removes all items from the list

Contains Returns true or false, depending on whether
the specified value was found in the list

IndexOf Returns the index of the first occurrence of the
specified value (or -1 if no occurrence is found).

Sort Sorts the items in the list

Feel free to dig deeper into the C# documentation yourself, if you want to know
more about the available methods. Some of them are quite sophisticated.

All these methods enter items into the list, and process them in various ways. How
do you retrieve a single item by index? This is done by using the old-school array
syntax:

int aValue = myFirstList[3];

This is convenient, but the responsibility for specifying a valid index rests with the
caller. Nothing prevents you from specifying an invalid index, which will provoke an
error (just as for arrays). You can actually also use the array-style syntax to change
the value of an element, like:

myFirstList[3] = 111;

This statement does not add a new item to the list, it only changes the value of an
existing item (assuming the index is valid…).

Lists are thus used through a mix of explicit, named methods like Add and Insert, and
array-style indexing. This may seem a bit confusing. You could argue that all inter-
action with a list ought to be through methods, to keep things consistent. Still, the
array-like indexing using [] is a very well-established standard in programming (you
will find it in a lot of programming languages), and if you look a bit further under the
hood, you will find that using [] is actually also a method call (called an indexer).
Indexers are similar to properties; in code, they do not really look like method calls,
but they are in fact method calls with a special syntax. We will not discuss indexers
further in this note, but if you define your own class to handle collections of values,
you can add indexers to your class definition, just as you can add properties.

32

Processing the items in a list is just as easy as for an array, if we use the foreach-
statement:

foreach (var item in myFirstList)
{

Console.WriteLine(item);
}

This loop is almost identical to the loop we used for printing the items in an array,
and that is in fact an important point. This loop doesn’t really care if we give it an
array or a list, since these structures are “similar enough” to be processed in this way.

What do we mean by “similar enough”? If you think about it, all that seems to be
necessary is:

• The structure must have a well-defined starting point (i.e. first item).

• The structure must have a well-defined ending point (i.e. last item).

• It must be well-defined how we proceed from one item to the next item.

If these requirements are fulfilled, we can find the first item, proceed from the first
item to the second item, to the third, and so on. We can also detect when we have
reached the end. Arrays and lists both have these features, along with many other
collection classes. The exact details of how to achieve this are not so interesting, and
they will be hidden inside the classes themselves. Later on in these notes, we will
learn the proper terminology to express such “similarities” in a more precise way.

The Dictionary class

The List class is a significant improvement over the array structure, and make many
tasks much easier. There are however a number of scenarios that lists cannot handle
very well. One such scenario – that often occurs in practice – is when we need to
handle data that has a key-value relationship.

Suppose we have a system for school management, and we need to create and
manage a lot of Student objects (we assume the system contains a Student class).
We may thus need to use a collection class that can contain (references to) Student
objects. A List could be a possible choice, like:

List<Student> allStudents = new List<Student>();

33

We can then go ahead and create Student objects, and insert them into the list. So
far, no problems. A useful feature of such a system is probably the ability to look up a
specific student. What information would we need in order to do that? Something
that uniquely identifies a student. The name is not really enough, since it may not be
unique. The Social Security Number (SSN, in Denmark known as CPR) is however gua-
ranteed to be unique. So, given an SSN, we must find the student with that SNN. If
we were to do this with a list, it would probably look like:

int index = 0;
Student theStudent = null;

while ((theStudent == null) && (index < allStudents.Count))
{

if (allStudents[index].SSN == givenSSN)
{

theStudent = allStudents[index];
}

}

In plain language: Examine the items one by one, until a student with the given SSN is
found, or all items have been examined.

There are several problems with this code. First, it is somewhat complex, so there is
definitely a risk of not getting it right the first time. Second, it is also very inefficient.
By “inefficient” we mean that it will use much more computing power than needed.
Suppose we have a school with 1,000 students. How many Student objects will we on
average have to examine before finding the right one? Probably about 500. Consider
how nice it would be if we could just use the SSN as an index! All of the code above
would boil down to:

Student theStudent = allStudents[givenSSN];

If a student with the specified SSN exists, theStudent will then refer to that object; if
not, theStudent will be null. The collection class named Dictionary enables you to do
just that!

When declaring a Dictionary object, you must specify a type for the key, and a type
for the value. In our example, the SSN is the key, and a string could be a proper type
for this. The value is then (a reference to) a Student object:

Dictionary<string, Student> allStudents = new Dictionary<string, Student>();

34

The syntax is a bit intimidating, but it is just the same style as for the List, with an
extra type parameter. We can now start adding items to the dictionary:

allStudents.Add(aStudent.SSN, aStudent);

For the Dictionary, the Add method takes two arguments: the key (here the SNN),
and the value (the Student object). You can also use the array-like syntax:

allStudents[aStudent.SSN] = aStudent;

The two statements do the same thing, but with a subtle difference. If you try to add
an item with a key that doesn’t already exist in the dictionary, the item is just inser-
ted, no matter which style you use. However, if the key already exist, then:

• The Add method will provoke an error (more specifically an exception)

• The index method will just overwrite the existing value with the new value.

You should thus choose the alternative that matches the behavior you want.

In order to remove an element, you only need to specify the key:

allStudents.Remove(givenSSN);

The method will return a bool value: true if an item was found and removed, false
otherwise.

To retrieve an item, you use the array-style index syntax:

aStudent = allStudents[givenSSN];

If an item with the specified key exist, the method will return that item. If no such
item exist, an error will occur! If this is not the desired behavior, you can use the
method ContainsKey to check if a given key exist in the dictionary, like

if (allStudents.ContainsKey(givenSSN))
{

aStudent = allStudents[givenSSN];
}

This is in fact a perfect opportunity to use the ternary operator:

aStudent = allStudents.ContainsKey(givenSSN) ? allStudents[givenSSN] : null;

35

The code needed for retrieving values associated with keys is thus much simpler for a
dictionary, compared to a list. As an extra bonus, the dictionary can retrieve such a
value much more efficiently (i.e. faster) than a list. We saw in the above, that using a
list would require sequential search through the entire list. This implies that if the
size of the list doubles, the average time needed to find a specific item also doubles.
For a dictionary, the time needed to find a value is (almost) constant, no matter how
many values we store in the dictionary! This makes the dictionary a very attractive
choice, if you have an obvious key-value relationship in your data. Just as for the List,
there are a lot of additional methods available for the Dictionary, and you should
take some time to get an overview of the methods.

Finally, the Dictionary contains two very useful properties: Keys and Values. The
Keys property returns the entire set of keys for the items in the dictionary, while
Values return the entire set of values. If you e.g. wish to iterate through all of the
values in a dictionary, it can be done like this:

foreach (Student s in students.Values)
{

Console.WriteLine(s);
}

There are several other collection classes available in the .NET class library (we will
discuss some of these later in the notes), but knowing about the List and Dictionary
will take you a long way. When should you then choose one class over the other?
Some general guidelines follow below:

Choose a List if:

• There is no obvious key-value relationship in your data

• You don’t need to retrieve data very often

• The typical operations will involve doing the same operation to all items

Choose a Dictionary if:

• There is a clear key-value relationship in your data

• You often need to retrieve a specific value, given a key.

As always, using your common sense is also a good starting point ☺.

36

Enumerations

A final, somewhat small, topic in relation to data structures are enumerations.
Enumerations are not related to collection classes; they solve a different problem.

The primitive types available in C# are often not exactly what we want. Suppose we
wish to make an application that deals with fruit, say these five kinds of fruit: Apple,
Pear, Cherry, Banana and Kiwi. Which of the existing types should we then use for
representing a fruit? Let’s examine some possible choices:

• bool: That is obviously not a good choice, since we only have two possible
values for a bool

• int: Possible (say, use the values 1 to 5, where 1 = Apple, and so on), but not
very convenient, since

o An int can obviously have a value smaller than 1 or larger than 5, so we
might assign a value that does not correspond to a fruit

o The code can become hard to understand

• string: Possible, but with problems similar to int

What we would really like is a custom-made type that can only hold exactly the five
values given above, making it impossible to specify a wrong value. This can be done
by defining an enumerated type. In code, it could look like:

public enum FruitType { Apple, Pear, Cherry, Banana, Kiwi }

An enumerated type will typically be part of a class definition, so we can imagine a
Fruit class in which FruitType is declared. If we now want to declare a variable else-
where in the program, and assign a value to it, it will look like:

Fruit.FruitType aFruit = Fruit.FruitType.Apple;

The main point is: We can never assign a value to the variable that does not repre-
sent a valid fruit, since the type itself specifies the legal values. Errors are caught at
compile-time, not at run-time. Also, the intention of the code is probably easier to
understand, even though the syntax for using the enumerated type is a bit verbose.

A typical rule-of-thumb is to use enumerations for types where there are from 3 to
around 10 legal values. This doesn’t mean that it is forbidden to have an enumeration
with 12 valid values, but your code will inevitably become more complex when the
number of valid values increases.

37

Code Quality, Part III (Keeping your code DRY)

A long way back in these notes, we discussed a scenario where a Human class con-
tained three properties: Weight, Height and BMI. It turned out that we could imple-
ment these three properties using only two instance fields: weight and height. The
BMI property could then be calculated from the weight and the height. Compared to
having an extra instance field for BMI, this gave us two advantages:

• We use less memory, if Human only has two instance fields instead of three

• We eliminate the risk of data inconsistency, since the value of the BMI is not
stored explicitly

This is a simple example of a very important principle in programming (and computer
science in general): the DRY principle:

Don’t
Repeat
Yourself

There are other ways to phrase this principle (for instance SSoT: Single Source of
Truth), but the essence is the same. Applied to programming, the principle dictates
that we should avoid duplicating any kind of information in our code. This goes for
both data and algorithms! More specifically, we will try to avoid duplication at four
levels in our code:

• Values

• Instance fields

• Methods

• Classes

DRY and values

Imagine that you create an application for some sort of “world simulation”. To keep
things simple, you define your world to be a 2-dimensional grid, where something
can happen in each cell of the grid. To see if your model works properly, you start out
with a small world, say 10x10 cells. You will probably write several loops like:

38

for (int x = 0; x < 10; x++)
{

for (int y = 0; y < 10; y++)
{

// Do something for each cell
}

}

Once everything seems to work, you might want to crank up the world size to a larger
grid, say 100x100. In order to do this, you must find all occurrences of such loops,
and replace 10 with 100. Visual Studio can in fact do this for you, by doing a project-
wide search-and-replace operation. That is, however, a risky operation. What if the
value 10 is used for other purposes in the code? Replacing those values with 100 is
probably asking for trouble…

The way forward here is to remove these explicitly stated values from the code (such
values are often called magic numbers), and replace them with something else. An
obvious suggestion is constants. In the example, we could simply introduce two con-
stants DimensionX and DimensionY, and use them in the relevant loops instead. If a
value is only used within a single class, you can just declare the constant as part of
that class definition. If the value is used in multiple classes, things get a bit more com-
plicated. One strategy could be to define a public constant, as part of a “settings”-like
class. In the world simulation example, we could imagine a WorldSettings class, from
which the dimension constants can then be retrieved, like:

public static class WorldSettings
{

public const int DimensionX = 100;
public const int DimensionY = 100;

}

Using the constants will then look like:

for (int x = 0; x < WorldSettings.DimensionX; x++)
{

for (int y = 0; y < WorldSettings.DimensionY; y++)
{

// Do something for each cell
}

}

39

This has two advantages: First, the specific values of the constants are now defined
once, and only need to be updated there. Second, it improves the readability of your
code. If you need to understand what the code is actually doing, it is probably easier
to understand WorldSettings.DimensionX than just the value 10.

DRY and instance fields

We have already seen the DRY principle in action in the BMI example, so there is not
that much to add here. The general rule-of-thumb is to look out for data that:

• An external user is interested in (and we therefore wish to expose as a proper-
ty of a class)

• Can be calculated from other data

A valid concern here is the effort (i.e. amount of computing power) needed to do the
calculation. Returning a value directly from an instance field is a very fast operation,
while a calculation will require more effort. Still, this should be seen in the proper
context. Suppose the primary purpose of the BMI in the example is to show the value
in a user dialog. In that case, it doesn’t really matter if it takes one micro-second or
50 micro-seconds to retrieve the value, since it is negligible compared to the time it
takes to open the dialog, and for the user to read the content. If there is a vast diffe-
rence (say, the calculation takes several seconds), you may need to consider other
strategies. Still, you should not break the principle just for efficiency reasons, if effici-
ency is not the primary concern.

DRY and methods

Once we apply the DRY principle to source code, things can get a bit more complex.
Consider the below addition to the Human class (don’t worry if you don’t understand
exactly what happens in the code – it’s just about printing information on the screen
with a bit of visual decoration):

public void PrintNameNicely()
{

string nameLine = "Name is : " +_name;
nameLine = nameLine.PadLeft(20);
nameLine = nameLine.PadRight(40);
nameLine = "|" + nameLine + "|";
Console.WriteLine("--");
Console.WriteLine(nameLine);
Console.WriteLine("--");

 }

40

So, our customer sees this, and says “Hey, that looks nice! Can’t you also make it
possible to print the height like that?”. Well, of course we can! Here we go:

public void PrintHeightNicely()
{

string nameLine = "Height is : " + _height;
nameLine = nameLine.PadLeft(20);
nameLine = nameLine.PadRight(40);
nameLine = "|" + nameLine + "|";
Console.WriteLine("--");
Console.WriteLine(nameLine);
Console.WriteLine("--");

}

That didn’t take long – we just copy-pasted the code from PrintNameNicely, and
made a few changes. Maybe we would even make a PrintWeightNicely method in
the same manner. Later on, the customer comes back and says “Well... I would rather
have stars (*) printed instead of hyphens (-)…can you do that?”. Yes, you can… but
how many places will you have to make that change? Three places, since you just
copy-pasted code from the original method. More work, and also the risk of missing
an update! The “fixed” code might now print name and height with stars, but weight
with hyphens… Now the customer is not happy!

How should we then approach this problem? If you apply the DRY principle here, you
should look at the code above and think “what do these two methods have in com-
mon?”. Quite a lot, since the only difference is the specific data printed in the middle
line, plus the leading text (Height is : vs Name is :). Everything else is the same. So, if
we create a new method, where these two pieces of information are converted into
parameters, we have a single method that can handle both situations! Let’s create
such a method:

private void PrintNicely(string data, string leadText)
{

string dataLine = leadText + data;
dataLine = dataLine.PadLeft(20);
dataLine = dataLine.PadRight(40);
dataLine = "|" + dataLine + "|";
Console.WriteLine("--");
Console.WriteLine(dataLine);
Console.WriteLine("--");

}

This method does not contain references to specific fields, but relies on two para-
meters instead. This method can now be called from the original methods:

41

public void PrintNameNicely()
{

PrintNicely(_name, "Name is :");
}

public void PrintHeightNicely()
{

PrintNicely(_height.ToString(), "Height is :");
}

We do introduce a very small complication, since the caller must now convert the
data to a string. Converting an int to a string is however a very simple operation. The
gain is absolutely worth the price, since we now only have to do the hyphen-to-star
update in one single place! Our code is now much DRYer ☺.

Why is the new method is private – why not make it public, and simply discard the
old methods? Remember that public methods are used by the outside world, so dele-
ting them may cause problems for others. Even changing them by e.g. changing the
name and/or the required parameters can cause problems.

Are we done? Well, take a closer look at the PrintNicely method. Does it contain any
repetition? The statements that print the top and bottom line are indeed identical.
We could create yet another method:

private void PrintSeparator()
{

Console.WriteLine("--");
}

and update the PrintNicely method accordingly:

private void PrintNicely(string data, string leadText)
{

string dataLine = leadText + data;
dataLine = dataLine.PadLeft(20);
dataLine = dataLine.PadRight(40);
dataLine = "|" + dataLine + "|";
PrintSeparator();
Console.WriteLine(dataLine);
PrintSeparator();

}

Here the gain seems a bit more marginal, but we have in fact isolated the use of
hyphens even further.

42

Could we go even further? There are still some spots of repetition left, for instance
the use of the vertical separator line (|). Instead of writing it explicitly twice in the
code, we could perhaps add a constant verticalSeparator to the class:

private const string verticalSeparator = "|";

So once again, we have isolated the specification of the vertical separator to one
single place in the code. If you feel up to the challenge, you can probably find even
more ways to improve the method.

A natural question here is of course: Is it worth the effort? Giving a definitive answer
to that question is impossible. It will always be a matter of risk versus reward, and
depend on specific circumstances. If you don’t care about (or don’t want to pay for)
such improvements to your code, you can in principle use that saved effort for some-
thing else. However, if you anticipate that the code will indeed need to be modified
later on, that modification may require more effort, due to the less-than-optimal
state of the code.

Code modifications of this kind are another example of code refactoring. We saw a
simpler refactoring much earlier in these notes (simple renaming of variables), and
we are now stepping up to some not-so-trivial refactorings here. Remember that any
refactoring is supposed to:

• Improve the structure of the code, making it easier to maintain and extend

• Keep the functionality of the code unchanged.

With regards to when it is “worth it” to do such a refactoring, Martin Fowler suggests
a “rule of three strikes” in his Refactoring book: When you write the same code the
third time, you should definitely refactor. This could be a useful rule-of-thumb to
start with.

DRY and classes (and a brief introduction to Inheritance)

We have now seen examples of how to eliminate code duplication inside a class, both
with respect to instance fields and methods. Code duplication may however also oc-
cur across several classes. Suppose we are creating a banking system, where we need
to model different types of bank accounts. We might have a standard bank account,
with the below features:

43

1. You can deposit money into the account
2. You can withdraw money freely from the account, as long as the resulting

balance is positive
3. You get an interest rate assigned once a year

We might also have a savings bank account, with the below features:

1. You can deposit money into the account
2. You can withdraw money from the account three times per month, as long as

the resulting balance is positive
3. You get an improved interest rate assigned once a year

If we just go straight ahead and create code for these two types of accounts, we will
probably create two classes StandardAccount and SavingsAccount. What will these
classes look like, i.e. what instance fields and methods might they have? A reasonable
suggestion could be that:

• Both classes have an instance field _balance, and a read-only property Balance

• Both classes have a Deposit method, and the implementation will be identical

• Both classes have a Withdraw method, but the implementation will be
different, since different business rules apply

• Both classes have an AssignInterest method, but the implementation will be
different, since different business rules apply

So, even though the individual classes might not contain any duplicate code, we will
still have code duplication, in the sense that e.g. the Deposit method is implemented
identically in two classes. Can we eliminate such cross-class code duplication as well?
Indeed we can, by using a mechanism called inheritance. The concept of inheritance
is one of the pillars of Object-Oriented programming. The ability to “share” common
features between classes is extremely useful, and is a very powerful tool for solving
the cross-class code duplication problem.

Consider again the two classes StandardAccount and SavingsAccount. We saw above
that they have certain features in common, and certain features that are individual.
We could illustrate this relationship like so:

44

Each ellipsis represent the code for one class: the yellow and blue areas will thus be
code specific for one particular class, while the green area will be the code common
to both classes. We would like to lift the green area out of the individual classes, and
make the individual classes “refer” to the green area:

The way to express this in terms of object-orientation is as follows:

• We create a base class called Account. This class is supposed to contain those
elements (instance fields, properties, methods, etc.) that are common to all
bank accounts. This is the green area.

• We create two derived classes called StandardAccount and SavingsAccount,
that only contains those elements that are specific for that particular bank
account type. This is the yellow and blue area, respectively.

• We let StandardAccount and SavingsAccount inherit from Account. The
inheritance mechanism has the effect that e.g. a SavingsAccount object will
now contain both the common elements defined in Account and the specific
elements defined in SavingsAccount.

We chose the phrase “a SavingsAccount object will now contain…” deliberately.
Inheritance does not mean that the source code from the base class is somehow
sucked into the derived class before compilation. The source code for Account will
only exist in the Account class definition, which was the whole point. The effect – in
terms of functionality – is however just as if we had duplicated the code. So once
again, we improved the structure of the code, without changing the functionality.

45

How do you then specify inheritance in C#? In the example above, we would not be
able to see any signs of inheritance, if we just looked at the Account class. That class
would look like any other class, with some instance fields, methods, etc.. For the deri-
ved classes, we explicitly specify inheritance like this:

 public class StandardAccount : Account
 {
 // Rest of class definition follows here...

A colon, followed by the name of the base class. That’s it. We have now specified
that StandardAccount inherits from Account.

There is quite a lot more to know about inheritance than what we described here,
but we will return to this shortly. For now, we just note that inheritance enables us to
eliminate cross-class code duplication, and is yet another tool to DRY up our code ☺.

When does code become DRY?

As you are hopefully aware, these notes are about Object-Oriented programming.
Another discipline in Object-Oriented Software Development is Object-Oriented
Design. These two disciplines are obviously related, but exactly how they are related
and what activities they involve – and how these activities may overlap – is a matter
of debate. The traditional standpoint could – very simplified – be stated like:

If we put a lot of effort into developing a sound and detailed Object-Oriented Design,
the subsequent programming is almost trivial.

In other words: If you think hard and long about the domain you want to model with
your software, you can probably figure out what classes you need, how they are rela-
ted in terms of base classes and derived classes, what instance fields and methods
you need, and so on and so forth…without writing a single line of code! Once you are
done with this activity – which is traditionally called Object-Oriented design – you will
get the code right the first time!

Is that how it works in the real world? Rarely… In real life, you will typically create a
design that looks “reasonable”, start to create some code, discover some flaws in the
design, rethink the design, rework and extend the code, and so on; a much more ite-
rative approach, where the line between design an code is blurred.

46

This state-of-affairs has been embraced by the so-called Agile movement. Their
standpoint – again very simplified – is:

It does not make sense to separate design and programming – design happens and
evolves hand-in-hand with code. We need to focus on structured ways to change the
design of existing code.

Hopefully, you can see that an activity like refactoring is exactly that; a way to change
the design of existing code. Refactoring is indeed considered to be one of the pillars
of agile software development.

So, why all this high-level talk at this point? Think about the previous example, where
we used inheritance to eliminate code duplication. If you subscribe to the traditional
standpoint on design-vs-code, you would argue that code duplication should never
have happened in the first place! You shouldn’t market inheritance as a remedy for
code duplication, since it is a tool for design purposes! We don’t really want to take
sides in this discussion, but either way, you may indeed find yourself in a situation
one day, where you can eliminate code duplication by introducing inheritance. Also,
the specific “mechanics” of inheritance are definitely in the realm of programming,
and should be mastered by any object-oriented programmer, no matter if inheritance
emerges as a result of up-front design or of code reorganization.

47

Exercises

Exercise Pro.2.1

Project BankV10

Purpose Use simple if-statements in an existing class.

Description This project contains a minimal BankAccount class, that sort of works.

However, it has some problems…

Steps 1. Test the BankAccount class, by adding code in Program.cs. Specifically,
make some tests that make the balance go negative.

2. Now change the code in the Withdraw method, such that a withdrawal is
only done if the balance is larger than or equal to the given amount.
Remember to test that the change works as expected.

3. This makes the BankAccount class more realistic, but there are still pro-
blems – you can call both Withdraw and Deposit with negative amounts
(try it), which does not make much sense. Make changes to both methods,
such that they only perform a withdrawal/deposit if the given amount is
positive. Remember that for the Withdraw method, the change made in
part 2 must still work!

4. Test that all your changes work as expected.
5. If we call Withdraw or Deposit, and detect an error situation, we don’t do

anything… What should we do?

48

Exercise Pro.2.2

Project WTF

Purpose Use if-else-statements. Use method calls creatively.

Description This project contains a class called MysticNumbers, with a single
method ThreeNumbers. All that is known about ThreeNumbers is that
it takes three integers as input, and returns one of them

Steps 1. By reading the code for ThreeNumbers, try to figure out what it does.
Write some test code in Program.cs to see if you are right.

2. Write and test a new method TwoNumbers, that does the same thing as
ThreeNumbers, but now only for two numbers.

3. Write and test a new method FourNumbers, that does the same thing as
ThreeNumbers, but now for four numbers (hint: you can probably use the
method TwoNumbers to make the code fairly short and easy).

4. Rewrite ThreeNumbers to use the TwoNumbers method. What code do
you like best – the original code or the new code?

5. All the …Numbers methods only perform operations on the method para-
meters (also note that the MysticNumbers class does not contain any
instance fields). How can we then change the …Numbers methods, such
that they are a bit easier to use (hint: we should add a single extra key-
word to the definition of each method)?

49

Exercise Pro.2.3

Project WeatherStationV10

Purpose Use multi-if-else-statements.

Description This project contains a class called Barometer, containing two pro-
perties Pressure and WeatherDescription. The latter property gives
an old-fashioned description of the weather, as a function of the
pressure, according to this table:

Pressure WeatherDescription
Below 980 Stormy

980-1000 Rainy

1000-1020 Changing
1020-1040 Fair

Above 1040 Very dry

Steps 1. Implement the property WeatherDescription, according to the table in the
description.

2. Test your code.

50

Exercise Pro.2.4

Project WhileLoopsBaseCamp

Purpose Get some experience with while-loops

Description The project contains some counter-controlled while-loops, and some
number sequences that should be generated using while-loops.

Steps 1. In Program.cs, four while-loops (Case 1-4) are given. Try to figure out what
the output from each loop will be. When ready, uncomment the line in
each loop that prints the current value of the counter variable, and see if
you were right.

2. Next follows Case 5-8. Here you must implement a while-loop yourself, to
produce the number sequence given in the comment for each case.

51

Exercise Pro.2.5

Project CorrectChangeAutomat

Purpose Use while-loops for a more complicated problem

Description This exercise is about calculating the correct change when a customer
pays a due amount with too much cash (yes, some people still pay
with cash…).

Example: A customer has to pay 266 kr., and pays with a 500 kr. bill.
The customer must then receive 234 kr. in change. The tricky part is to
figure out how to pay this amount using ordinary bills and coins, and
paying back as few bills and coins as possible. In this example, the
correct way to pay back correct change would be:

• One 200-kr bill

• One 20-kr coin

• One 10-kr coin

• Two 2-kr coins

Steps 1. Implement code to calculate and print out the correct change. To keep
things simple, we assume that you only use 100-kr bills, 10-kr coins and 1-
kr coins. Remember to test your code with a couple of different values for
change. You can just add the code in Program.cs.

2. Once the above problem is solved, include some more bills and coins, like
50-kr bills, 5-kr coins, etc..

3. If you used while-loops for solving the problem: Try to solve the problem
without using loops.

52

Exercise Pro.2.6

Project RolePlayV20

Purpose Get further experience with while-loops. Work with a project
involving several classes.

Description The project is supposed to model a very simple game, where a hero
can battle against a beast, until either beast or hero is dead! The
project contains four classes, which are described in general terms
here – see the code for more details:

• The NumberGenerator class, with the method Next. This is a
helper class for generating random numbers.

• The BattleLog class, where individual strings can be “saved”,
and later on printed out on the screen.

• The Hero class, which models a game character. It is a very
simple model, since it just has a number of hit points.

• The Beast class, which also models a game character, in a way
similar to the Hero class.

Even though this is a very simple setup, it does include fundamental
game mechanics from many popular role-playing games.

Steps 1. Study the classes in details, so you are sure of what they can do and how
they work. Note how the Hero and Beast classes make use of the Number-
Generator and BattleLog classes.

2. See if you can figure out how to code a battle between a Hero and a Beast
(until the death!). A bit of code is present in Program.cs, but it obviously
needs to be extended.

3. When you can make the two game characters battle each other, there are
a number of things to consider afterwards:

a. It seems like the Hero wins most of the time (depending of course
on how you coded the battle…). Why is that? How could we make
the battle more fair?

b. The damage dealt by the Hero is always between 10 to 30 points.
How could we change that? Could we even let the creator of the
Hero object decide this interval? Could this also be done for the
number of initial hit points?

c. Do we really need separate classes for Hero and Beast?

53

Exercise Pro.2.7

Project DrawShapes

Purpose Get some experience with for-loops

Description This exercise is about drawing some simple shapes on the screen,
using for-loops to get the job done. A very simple class DrawingTool is
provided to help with this.

Steps 1. Study the class DrawingTool. As you can see, it is very simple. Why are the
methods static?

2. Using for-loops and the DrawingTool class, see if you can create code to
draw the shapes A to E, as defined in the comments in Program.cs. NOTE:
The shapes get increasingly hard to draw…

54

Exercise Pro.2.8

Project ListBaseCamp

Purpose Get some experience with methods in the List class.

Description This exercise is about predicting the result of applying some methods
in the List class to a List object, and also about writing some code to
use a List object

Steps 1. In Program.cs, a List object is created, and some elements are added and
removed. At four points in the code (Case 1-4), you must predict the
outcome of the WriteLine statement. When ready, you can uncomment
the WriteLine statement, and see if your prediction was correct.

2. Following the cases above, four more cases are given (Case 5-8), where
you must write code that uses the List object, to retrieve various informa-
tion about the elements in the list. Details for each case are given as com-
ments in the code.

55

Exercise Pro.2.9

Project RolePlayV21

Purpose Get some experience with the List class. Work with a relatively
complex setup of collaborating classes.

Description In a previous exercise, we designed a battle between a Hero and a
Beast. In this exercise, a Hero will now fight against an “army” of
Beasts, represented by a new BeastArmy class.

An “army” is essentially a List of Beast objects. In order to keep the
original battle logic intact, we will try to implement properties and
methods in the BeastArmy class, that correspond to properties and
methods in the Beast class. However, the implementation does
become more complex when dealing with several beasts…

Steps 1. Review the classes Hero and Beast. They are fairly similar to the Hero and
Beast classes from the previous exercise, but do contain a few improve-
ments, mostly in the form of more parameters to the constructors.

2. Review the battle logic code found in Program.cs. This code manages a 1-
on-1 battle. Make sure you understand the logic of the code.

3. Implement the methods DealDamage and ReceiveDamage, plus the pro-
perties Dead and BeastsAlive, in the class BeastArmy. The specification of
the methods and properties are found as comments in the code.

4. Change the code in Program.cs, to do a battle between a single Hero and
an army of Beasts. It may take a bit of balancing (tuning the number of
Beasts, their hit points, etc.), to make the battle reasonably fair.

5. Implement some sort of statistics, to be able to measure if the battle setup
is fair. You should e.g. be able to run 100 battles, and print out the per-
centage of battles won by the Hero and the Beast army, respectively.

56

Exercise Pro.2.10

Project LibraryV10

Purpose Use the List class. Implement linear search.

Description This exercise illustrates the concept of a repository. A repository is a
class that can store and use data of a certain type, without revealing
the specific representation of data to the user of the repository.

The project contains the simple domain class Book (we consider the
isbn number to be a “key” for Book, i.e. no two Book objects can have
the same isbn number). Also, it contains the (incomplete) repository
class BookRepository. The three public methods in BookRepository
allow the user to add, look up and delete Book objects in a simple way
(see the comments in the code for more details about each method).
In this version of the exercise, the BookRepository class uses a List to
store Book objects internally.

The solution also contains a Unit Test project, which tests the public
methods in the BookRepository class.

Steps 1. Complete the three methods in the BookRepository class, using the com-
ments for each method as a guideline for implementation.

2. Build the application, run the Unit tests, and see if the Unit Test is “all
green” (if not, you will have to review your code, and maybe debug it…).

3. Is there anything in your code that prevents a user from adding two Book
objects with the same isbn value to the repository?

4. How could you prevent that Book objects with the same isbn value are
added to the repository?

57

Exercise Pro.2.11

Project LibraryV11

Purpose Use the Dictionary class.

Description NOTE: This exercise is intentionally almost identical to Pro.2.10

This exercise illustrates the concept of a repository. A repository is a
class that can store and use data of a certain type, without revealing
the specific representation of data to the user of the repository.

The project contains the simple domain class Book (we consider the
isbn number to be a “key” for Book, i.e. no two Book objects can have
the same isbn number). Also, it contains the (incomplete) repository
class BookRepository. The three public methods in BookRepository
allow the user to add, look up and delete Book objects in a simple way
(see the comments in the code for more details about each method).
In this version of the exercise, the BookRepository class uses a
Dictionary to store Book objects internally.

The solution also contains a Unit Test project, which tests the public
methods in the BookRepository class.

Steps 1. Complete the three methods in the BookRepository class, using the com-
ments for each method as a guideline for implementation.

2. Build the application, run the Unit tests, and see if the Unit Test is “all
green” (if not, you will have to review your code, and maybe debug it…).

3. Is there anything in your code that prevents a user from adding two Book
objects with the same isbn value to the repository?

4. How could you prevent that Book objects with the same isbn value are
added to the repository?

58

Exercise Pro.2.12

Project SchoolAdministrationV10

Purpose Use the Dictionary class. Work with an application containing several
classes.

Description The project contains the class Student. This is a simple representation
of a student, with three instance fields; id, name and test scores. The
first two are simple, but the “test scores” field is a Dictionary, holding
key-value pairs of course names (string) and scores (int).
The project also contains the class StudentRepository. This class is
supposed to be able to retrieve various information about the
students; for this purpose, an instance field _students of type
Dictionary is used to hold key-value pairs consisting of ids and
Student objects (since a student is uniquely identified by an id)

The solution also contains a Unit Test project, which tests the public
methods in the StudentRepository class.

Steps 1. The class Student is complete, and you need not change anything in it.
However, take a good look at the Student class anyway, and make sure
you understand how the methods work. Pay particular attention to the
property ScoreAverage.

2. Look in the class definition of StudentRepository. It contains four methods
(AddStudent, GetStudent, GetAverageForStudent, GetTotalAverage) that
are not completed. Add code to complete these methods, according to the
specification given in the comments in the code.

3. Build the application, run the Unit tests, and see if the Unit Test is “all
green” (if not, you will have to review your code, and maybe debug it…).

59

Exercise Pro.2.13

Project Flinter

Purpose Use enumerations

Description Flinter is supposed to be the start of a new dating app. You can create
profiles for those you are interested in meeting.

In the project, the class Profile has been included. The class contains
instance fields for gender, eye color, hair color, and height. You can
thus create a Profile object by specifying values for each of these four
fields in the class constructor. Furthermore, you can get a text
description of a Profile object by using the property GetDescription.

Steps 1. Code that tests the Profile class is included in Program.cs. Examine the
code in the Profile class definition, and see if you can predict the outcome
of running the test.

2. Reflect a bit on the types chosen for the instance fields, and also run the
test. Several problems can be identified:

a. In two test cases, we specified hair color where we should have
specified eye color, and vice versa (unless you really want a partner
with white eyes and blue hair…)

b. In one test case, we specified a height category that doesn’t exist.
c. Using a boolean for gender specification seems very restrictive and

indeed “binary”.
3. Change the Profile class definition by adding enumerated types for

gender, eye color, hair color and height category. Use these new types for
the four instance variables. The constructor needs some changes as well.
Also consider if you still need the properties GenderDescription and
HeightDescription.

4. Change the code in Program.cs, so it is compatible with the redesigned
Profile class. Observe how it is now only possible to specify legal values for
each type.

5. Reflect a bit on the changes. Is there anything in the new code that is
more complicated than it was in the original code? Was it always relevant
to use an enumerated type?

60

Exercise Pro.2.14

Project CalculationSimulation

Purpose Improve code structure by replacing values with constants, instance
fields and parameters

Description The project contains a simple simulation of a calculation. The inten-
tion is to simulate a calculation that takes about half a second. The
calculation takes two values x and y, and returns an integer value.

In order to speed up the calculation, a “cache” class is also provided.
The idea is that once a calculation has been done, the result can be
stored in the cache, from which it can be retrieved very quickly. See
the code for further details.

Steps 1. The code is set up to do calculations in a 5x5 table (that is, x and y can be
numbers between 0 and 4, both included). How many places in the project
would you have to change something, if you want to do calculations in a
10x10 table instead?

2. Change the code, such that you get rid of all the instances of the number 5
in the methods. This could be done by using constants, instance fields and
parameters.

3. It seems like -1 means “no value”. Change the code, such that the value -1
does not occur in the methods.

4. Are there other values that are candidates for being replaced with con-
stants or parameters? If so, make the necessary updates to the code.

61

Exercise Pro.2.15

Project WebShopV10

Purpose Improve code structure by creating new methods

Description Part of the business logic in a web shop involves calculating the total
cost of an order. The logic for calculating the total cost is found in the
code in the project.

In the project, the Order class contains an item list. For simplicity, the
item list just contains the net price for each item in the order. The
class also contains a property TotalOrderPrice for calculating the total
price for the order.

The solution also contains a Unit Test project, which tests the proper-
ty TotalOrderPrice in the Order class.

Steps 1. The implementation of the TotalOrderPrice property is less than optimal.
Rewrite it, with the intent of:

a. Removing duplicate code
b. Making the method easier to understand

2. Make sure to regularly build the application, run the Unit tests, and con-
firm that the Unit Test is still “all green”. If not, you will know that your
most recent change caused the tests to fail.

