

Object-Oriented Pro-
gramming with C#
Getting Started

By Per Laursen
07-08-2022

1

INTRODUCTION ... 2

THE PROGRAMMING PROCESS ... 3

SOFTWARE TOOLS .. 4

Microsoft Visual Studio - overview ... 5

Tools, extensions and packages - overview .. 5

Tools (workloads) .. 6

Extensions ... 6

NuGet packages .. 7

What should I install? ... 7

CODE ORGANIZATION AND VISUAL STUDIO BASICS .. 9

Loading code into Visual Studio .. 9

Code organization ... 11

Statements and Syntax ... 15

Understanding what Visual Studio is saying ... 18

Comments in code .. 20

EXERCISES .. 22

Start.1.. 22

2

Introduction

In this chapter, we take the first steps towards understanding what “computer pro-
gramming” is all about. We introduce some of the software tools we will be using
for developing C# programs, and take a first look at the structure of a so-called C#
project.

3

The Programming Process

If you have never tried something like computer programming before, it may seem
like a mysterious activity – what is it really that we are doing? If we primarily focus on
computer programming as a way of defining “business logic”, we are usually defining
and manipulating a model of a small piece of the world.

What does that mean more specifically? Suppose we wish to create a computer pro-
gram – or App1, for short – for administration of a school. Then we probably need to
store and process certain information about students (and other things) in the App.
What information is relevant to know about a student? Date of birth? Shoe size?
That will depend entirely on the requirements to the App, which somebody will
have to define.

The outcome of such a requirement definition process will likely be that some
parts of the available information is needed, while other parts can be left out.
The “model” of a student in the App will thus only contain certain information;
the information which is relevant in relation to the requirements. Exactly which
information we include will depend on the specific situation, i.e. the specific
requirements. Once we have figured out what information we need to include
for each “concept” (student, teacher, classroom, course, …) in the model, we
need to figure out how to represent that information in our App. We get to
that part very soon!

In almost all cases, the information will need to be processed in certain ways. A
very simple processing could be just to show the information to a user of the App.
A more complex processing could be to change the information. For a student,
some information will probably never change (e.g. the date of birth), while some
information will most likely change (e.g. the number of courses taken).

The way information changes can range from quite simple to very complex. The
simplest change could simply be to change the current value to a new, given value.
Say, when a student has taken one more course, the number of courses is increased
by one. Other changes are more complex. If we e.g. store an average of the marks
obtained for the exams passed by the student, then passing an additional exam will
require a recalculation of the mark average. In any case, there will always be rules
for how to process the information.

1 We will in general refer to a computer program as an App (short for ”Application”), without assuming anything specific
about what platform the App runs on. This could be an ordinary PC, a smartphone, a tablet, or some other device.

4

In programming, we then try to translate such rules (formulated in a human – or at
least human-friendly – language) to instructions/logic written in a language the
computer can understand; or more precisely: written in a language that

• We as humans can use to express such rules with relative ease, and

• The computer (using specialized software called a compiler) can translate
into a language the computer hardware understands “directly”

A wide range of such programming languages exist. Some are quite obscure and
only known to few, while others have gained widespread popularity. The program-
ming language called C# (C-sharp) belongs to the latter category, and is used in
these notes. C# is a so-called Object-Oriented language; other such languages are
e.g. Java and C++.

So, translating our rules into the chosen programming language will result in writing
a number of statements. A single statement usually performs a quite simple step of
data processing, so most interesting programs will contain a large number of such
statements (many thousands, even millions…).

When we have a large body of statements, we need to organize them into larger units.
One such unit is a method, which is a fairly small collection of statements (usually less than
twenty) performing a somewhat more complex kind of data processing. Collections of
methods can then be organized into even larger units called classes, and so forth. We will
discuss such units of organization later in these notes.

Software Tools

In order to write Apps using the C# language, we need some software tools to help us
with this. These software tools should enable us to:

• Write C# code as easily as possible

• Write C# code of high quality

• Write C# code in collaboration with other developers

• Help us to obtain – and maintain – an overview of the entire body of code,
including all the various units of code organization

• Translate our C# code into code that the computer can run directly

• Help us find and fix errors in our code, both when the code is written (syntax
errors) and executed (logic errors)

5

Some of these features are somewhat fluffy (what does e.g. “high quality” mean in
relation to C# code…?), but we will try to be more specific later in the notes.

Microsoft Visual Studio - overview

C# is invented by Microsoft, and their tool Visual Studio can on its own help us with
much of the above. You can obtain a free copy of Visual Studio from the school2.

Visual Studio is a professional and commercial tool, with a lot of “bells and whistles”. It
can therefore appear somewhat overwhelming at first glance. Fortunately, we only need to
understand and use a fraction of the functionality:

• Understand the structure of a so-called solution or project

• Be able to navigate through the files in a project

• Understand the role of the files included in a project

• Add code to a project

• Compile, build and run a project

• Understand various responses from Visual Studio, like error messages, warning
messages, suggestions, etc..

Before we dig into the details about how to perform the above actions in Visual
Studio, we need to take a brief look at the overall structure of Visual Studio as such.

Tools, extensions and packages - overview

In the earlier days of Visual Studio, Microsoft seemed to approach the development
of Visual Studio in a “monolithic” fashion, where the intention was to build a single,
stand-alone tool, which (ideally) would contain everything you need in order to deve-
lop software. As the world of software development has become more and more
complex and fragmented, Microsoft has now adopted a much more open strategy,
where Visual Studio has the role of a sort of “functionality hub”, which on its own
only contains limited functionality, but instead allows you to add additional func-
tionality to Visual Studio by different means. The three major ways to add function-
ality is through tools, extensions and packages.

2 Details on how to do this may vary from course to course, and is thus found elsewhere

6

Tools (workloads)

The term tool may be a bit misleading in this context, since it actually refers to a
number of so-called components, which adds some capability to Visual Studio. Since
a very large number of these components exist, Microsoft have bundled them into
so-called workloads. A workload is thus a collection of a (large) number of compo-
nents, which adds a capability to Visual Studio, for instance the ability to develop
applications for mobile devices. Below is an example of some of the workloads that
can be added to Visual Studio.

Extensions

The workloads described above are thus optional to include in your own customized
setup of Visual Studio. Still, they mainly consist of tools developed by Microsoft. It is
however also possible for a third-party developer to develop software that integrates
into Visual Studio. By “integrates into” is meant that once the third-party software in
question has been installed, it will not appear as an extra application, but rather ma-
nifest itself as extra functionality added to Visual Studio itself. The functionality may
be very subtle; it could e.g. just add some keyboard shortcuts to the already existing
shortcuts.

7

That fact that Microsoft has opened the door for third-party developers has resulted
in a flurry of such extensions. You can (try to) get an overview of these extension at
the Visual Studio Extension Marketplace3.

NuGet packages

The extensions described above will usually add some permanent features to Visual
Studio, for instance an enhancement to the development user interface. An exten-
sion is thus not something that relates to a specific development project, but rather
to Visual Studio seen as a tool. Suppose now that a third-party developer has come
up with a nice piece of software – maybe some very efficient algorithms for data
encryption – and wish to make this software available to other developers. This can
be done in the form of a NuGet package. Such a package is simply a way of distribu-
ting code from third-party developers. The ability to use NuGet packages directly
from Visual Studio has been a part of Visual Studio for some years now, and seems to
have evolved into the de facto standard for package distribution.

A very important difference between extensions and packages is that packages are
added to individual projects! If you are developing an application which needs to use
encryption, the project for that application may need to refer to a NuGet package
containing that functionality. If you are developing another application which does
not use encryption, it doesn’t need to refer to that package. In general, you try to
limit references to packages to those packages you actually use, to keep the size of
your applications as small as possible.

What should I install?

The concept of piecing together your setup of Visual Studio may appear confusing at
first. Don’t worry too much; if you miss something along the way, you can always add
it to your installation later. Also, we only need to install a fairly small set of tools and
extensions to begin with.

With regards to workloads, we only need to have two workloads installed initially.
Once you have successfully installed Visual Studio and started it, choose Tools | Get
Tools and Features from the menu. This should bring up the overview of workloads
we saw a couple of pages back:

3 https://marketplace.visualstudio.com/

8

Initially, we only need to have these two workloads installed:

• .NET Desktop development

• ASP.NET and web development

If there is already a checkmark in each of these boxes, you don’t need to do any-
thing – just close the window. If not, check the missing boxes and press Modify.
Note that these workloads are quite large – some of them contain several Gigabytes
of data – so installation may take a while. Be patient ☺.

With regards to extensions, we don’t need any extensions initially.

9

Code organization and Visual Studio basics

We should now be up-and-running with Visual Studio. We will now try to open a
(very small) body of code in Visual Studio, for two purposes:

• Investigating how code is organized

• Trying to load, navigate, edit and run the code

Loading code into Visual Studio

For demonstration purposes, a very small body of code named Sandbox has been
created. This body of code should be available to you – exactly where will depend
on the course, but your teacher can inform you about this ☺. With this information,
you should be able to follow the below steps:

First, start Visual Studio. This will show you a window looking like this:

Next, choose Open a project or solution. This will open a file explorer window.
Navigate to the folder where the Sandbox body of code is located (again, your
course teacher will inform you of the actual location). Once you have navigated to
the correct folder, you should see something like this:

10

The folder named Sandbox will contain all of the elements which constitute a so-
called Visual Studio solution. We will discuss what a solution is in just a moment. For
now, just navigate into the folder, which should look like this:

Notice the bottom file Sandbox.sln of type Visual Studio Solution. This file contains
the top-level definition of the content of this particular solution. Now double-click
on Sandbox.sln – this will load the solution into Visual Studio. After a short while,
Visual Studio should look something like this:

11

If Visual Studio doesn’t look exactly like this for you, don’t panic! First of all, some
additional windows might be visible as well; they are not important now, so you can
leave them as-is, or just close them. The only interesting window for now is the
window with the title Solution Explorer. If you for some reason don’t see a window
with this title, choose View | Solution Explorer from the menu), which will open the
window again.

So, what are we seeing in this window? In order to understand that, we first need a
basic understanding of code organization in Visual Studio.

Code organization

The highest unit of organization in Visual Studio is a solution. Remember that Visual
Studio is an advanced, industrial-strength tool, which can handle very complex soft-
ware development tasks. This could imply that the entire “solution” to e.g. a school
administration system would contain several applications (say, a smartphone App
for students, a desktop App for staff, another desktop App for administrators, etc.).
All these applications should be manageable as one integrated solution. A solution
can therefore consist of several projects.

The next level of organization is thus a project. A project will usually correspond to a
single application. If you have several projects in a solution, you will still be able to
modify, compile and run a single project, without involving the other projects.

With this information, we can already better understand what we just did, and what
we see in the Solution (aha!) Explorer window.

First, we navigated to a folder named Sandbox. In Visual Studio, a solution is typi-
cally contained in a file folder with the same name as the solution it contains. So,
this folder contains a solution called Sandbox.

Second, we entered the folder. The folder contained

• A file named sandbox.sln (a Visual Studio Solution file)

• A file named Sandbox.csproj (a C# project file)

Remember that a solution can contain several projects? This particular solution
(named Sandbox) contains a single project (also named Sandbox). It might seem
confusing that we have a project with the same name as the solution it is part of,
but this is actually a quite common naming convention for small solutions that only

12

contain a single project. It will be quite a while before we deal with solutions con-
taining more than one project. Also, it has in this simple case been chosen to have
both the .sln file (defining the entire solution) AND the .csproj file (defining a single
project) in the same folder. A alternative – which is definitely recommendable when
working with multi-project solutions – is to have each project contained in sub-
folders to the solution folder. The subfolder corresponding to a specific project will
then usually have the same name as the project itself.

It can initially be a bit confusing to distinguish between the file structure and the
logical structure of a solution. The logical structure is defined by the contents of the
solution and project files, plus the actual code itself. This structure always follows
the same pattern: Solution -> Project -> Code. The file structure is just the physical
location of the various files. This can – in principle – be chosen more freely, but the
usual practice is to use a structure closely related to the logical structure, like e.g.
using subfolder for projects. In order to keep things as simple as possible, we have
however chosen to deviate from this general principle, when the solution only
contains a single project.

With this in place, we can make more sense of the content in the Solution Explorer
window:

This should be read as “Visual Studio has now loaded the solution named Sandbox.
That solution contains a single C# project named Sandbox”.

What’s does the C# project then contain? Seemingly two elements.

• A element named Dependencies. This element is not relevant for now.

• An element named Program.cs.

13

Program.cs contains actual C# code, so we have now reached the really interesting
part. Before proceeding, we just need to briefly return to the discussion about code
structure.

What is the next unit of organization below project? The simple answer is classes.
Classes is where the actual C# code resides, and we will deal with classes in great
detail in these notes, since they are the very foundation of Object-Oriented Pro-
gramming. A class is (usually) defined in a single file with the extension .cs. In the
Sandbox project, there is only a single class Program, defined in the file Program.cs.

For completeness, it should be mentioned that a unit of organization between pro-
ject and class actually exist, called namespace. A namespace is a way to organize
classes that in some sense belong together, which is useful in projects with many
classes. However, if you have very few classes in your project, the most common
setup is to have just one namespace, with the same name as the project. We will
not really utilize namespaces before our projects grow beyond these “few classes”.

Returning to classes – which we advertised as containing actual C# code – the next
unit of organization is methods. A method is a collection of C# statements, that per-
forms some useful task. We will deal quite a lot with methods later on. It should also
be mentioned that classes can contain more than just methods, but in terms of code
organization, they can for now be thought of as containers for methods.

With statements, we have reached the end of the line of terms of code organization,
since statements are the “atoms” of code. Let us then review the entire hierarchy of
code organization:

A solution contains a number of
 projects, that contain a number of
 namespaces, that contain a number of
 classes, that contain a number of
 methods, that contain a number of
 statements

A six-tiered hierarchy, no less! This may seem overwhelming, but try to compare it
with a publication of a large body of text, say, the collected works of Kierkegaard (a
Danish philosopher of some fame). Such a publication would probably be organized
like this:

14

A publication contains a number of
 volumes, that contain a number of
 chapters, that contain a number of
 sections, that contain a number of
 paragraphs, that contain a number of
 sentences, that contain a number of
 words

A seven-tier hierarchy… This hopefully illustrates that the code organization is as
such quite meaningful, and not overly complex. However, the solutions we will
encounter in relation to these notes will usually have a rather simple structure:

A solution that contains one
 project, that contains one
 namespace, that contain a few
 classes, that contain a few
 methods, that contain a few
 statements

This also holds for the Sandbox solution. Going forward, we will try to work in a
bottom-up fashion, where we initially focus entirely on writing statements, without
thinking too much in terms of methods and classes.

We conclude this first brief look at Visual Studio by trying to actually run the code we
have loaded into Visual Studio, i.e. the Sandbox project. In general, C# code must be
compiled and built, before it can be executed (running the code is often denoted as
executing the code). Compiling and building C# code essentially consists of two activi-
ties, both performed by Visual Studio

1. Checking that the code obeys the syntax for the C# language
2. Translating the code into a language the computer can execute directly

The process is a bit more sophisticated than this, but we need not worry about that
now. One important thing to note is that even though the code passes successfully
through these steps – and can therefore be executed – there is no guarantee whatso-
ever that the code behaves as we intend it to, i.e. that it complies with our require-
ments. We will return to this distinction later.

15

The Sandbox project does contain code that is ready-to-run, and we set the execu-
tion of the code in motion by either pressing F5 on the keyboard, or clicking on the
button containing a small green triangle in the toolbar:

If you are able to run the code successfully, you should see something like this appear
on your screen:

This somewhat primitively looking window is a so-called console application. This is
what most Apps looked liked before Windows and Macs became mainstream. It does
look rather dull, and only allows input/output in character form, but using this style
first enables us to postpone having to learn about GUI (GUI: Graphical User Interface)
development initially. GUI development is actually a quite complex activity, and we
need to know a lot of basic programming terms before it makes sense to start learn-
ing about it.

As advertised on the screen, the App does nothing more than print Hello, World!,
and now awaits that you press a key on the keyboard to terminate it (there is also
quite a bit of “noise” between those two lines, which is not important for now). Once
you do that, you have successfully loaded, compiled, built and executed your first C#
application using Visual Studio!

Statements and Syntax

As promised earlier, we will investigate the organization of code in a bottom-up
manner, starting with the simplest entity: the statement.

A statement can be thought of as a kind of “code atom”, i.e. it is a fundamental code
building block, but it also has an internal structure, which must follow certain rules.
We cannot just mash up any sequence of characters and claim it to be a C# state-
ment, just as we cannot throw together a random mix of electrons, neutrons and
protons, and expect to end up with a stable, useful atom. Only certain combinations
qualify as being valid C# statements.

16

More specifically, a statement is an instruction to the application about what to do
next. This could be to

• Perform an arithmetic or logical calculation

• Read or write data to a file, the screen, etc..

• Control the “flow” of execution, i.e. choose between several alternatives about
what to do next

• …and a lot of other useful actions

You may already here sense that statements tend to fall into two board categories:
statements that actually do something, like a calculation, visualization or data trans-
fer, and statements that control what to do next, depending on certain conditions.
We shall see several examples from both categories in these notes.

Returning to Visual Studio; if you – assuming the Sandbox project is still loaded –
double-click on the file Project.cs in the Solution Explorer window, a new window
will open, showing the content of that file:

The text in the line is indeed a C# statement. It instructs the computer to print out
the words Hello, World! on the screen. However, if you are new to programming in
general, that may be hard to figure out just by reading the line of code… The senten-
ce Hello, World! is indeed part of the line, but it is wrapped up in a lot of other stuff.
What that “stuff” precisely means is not that important – we will learn to understand
it later on. Also, don’t worry about the small graphical symbols – like the little screw-
driver symbol just left to the text – that are also visible. They appear because Visual
Studio have some suggestions to us concerning the code; later on, we will also dis-
cuss how Visual Studio communicates with us.

To put the issue of understanding code in more general terms: there will usually be a
“gap” between what we intend the computer to do, and how we express that inten-
tion in a programming language. In human language, our intention could be written
as:

17

Please display the words Hello, World! on the screen.

In C#, that intention is expressed as:

Console.WriteLine("Hello, World!");

If somebody could make a compiler that could directly translate the human-language
intention into executable code, the world wouldn’t need programmers… However,
human language is inherently vague and ambiguous, while a computer needs very
precise instructions! If you think about it, the human-language intention leaves many
questions unanswered, like e.g.

• How should the words be displayed (where on the screen, color, size, etc.)?

• What should be done after displaying the words? Stop the application, wait for
the user to do something, or…?

And this is just for an extremely simple intention! For more complex intentions, we
need intermediate “stops” on the road from intention to code, like requirement
specifications, designs, etc..

Another difference between human language and C# code is the tolerance for errors.
Suppose we made some small spelling mistake in our intention description:

Please displlay the words Hello, World! on the screen.

This small mistake would probably not hinder another human being in understanding
the intention. However, a similar mistake in the C# statement, like

Console.WriteLline("Hello, World!");

will have dire consequences (Try it! Go to the file Program.cs, make the change, and
see what happens. Also try to execute the program…). The compiler is absolutely
unforgiving about errors! A C# statement has to strictly follow a predefined syntax
for that particular type of statement. Imagine that your mail application had a similar
Draconian4 attitude towards errors, absolutely refusing to send a mail unless there
are ZERO spelling and grammatical errors in the content…

4 Draconian: To apply severe punishments to small offenses

18

The fact that C# programming (and most programming, actually) is a discipline that
requires strict adherence to a given syntax, is something you need to come to terms
with as an aspiring programmer. Fortunately, the software tools available now do a
very good job in assisting you with getting the syntax right.

Understanding what Visual Studio is saying

If you try to modify or add code to Program.cs in the Sandbox project, you will quick-
ly notice that Visual Studio will provide suggestions to – and even point out errors –
while you type! Visual Studio’s eagerness to help you can feel a bit intrusive and even
confusing at first, but once you get used to it, you will find it quite helpful.

If you tried to do the small change suggested above, you probably noticed that as
soon as you made the change, something happened in the code editor window:

A wavy red line appeared below the word WriteLline. This is Visual Studio telling us
that there is an error in the statement, and the error is more specifically related to
the word WriteLline. If you hover the mouse cursor over the red line, Visual Studio
will provide more details:

These details can initially feel somewhat cryptic, but the essence of the message is in
this case that we misspelled WriteLine. Visual Studio is actually also clever enough to
suggest how the error could be fixed. If you click on the small triangle next to the
lightbulb, these suggestions will appear:

19

In this case, there is only one suggestion: Change WriteLline to WriteLine. Next to
the suggestion itself, Visual Studio shows a “preview” of the change. If you are happy
with the suggestion, you can simply select it, and Visual Studio will apply the change
to the code. Neat!

In general, you should try to fix errors as soon as you see them! If you have more
than one error in your code, some errors may actually not be true errors, but rather
errors that occur because the previous code is incorrect. In that case, you should try
to fix the errors from the top and downwards.

In addition to being eager to point out errors and give suggestions to existing code,
Visual Studio is also quite eager to help you write new code. In Program.cs, try pla-
cing the mouse cursor just after the “;” at the end of the statement, and press Return
on the keyboard. Visual Studio then promptly comes up with a suggestion for code to
put on that line:

Note that this is indeed only a suggestion! As stated, you have to press Tab to accept
the suggestion, which will then be inserted. If you start typing something else, the
suggestion will go away. Also note that as soon as you start typing something, Visual
Studio will also quite quickly produce a drop-down box with suggestions to choose
from. If you e.g. type “i” in the new line, you will see something like this:

20

There are several other forms of productivity “enhancers” in Visual Studio, some
more useful than others. We will not explicitly describe any more here, since this is
by itself a quite large topic. You will probably pick many of these up along the way, as
you get more hands-on experience with Visual Studio. Finally, it should also be men-
tioned that many of these features have settings you can play around with, in order
to help you fine-tune Visual Studio to be just as helpful as you want.

Having a development environment that is so “alive” is a huge benefit, and once you
get used to it, it will increase your productivity considerably. Still, it does take some
time to get used to, and the error messages and suggestions are sometimes hard to
decipher. Practice is the only way forward here!

Comments in code

We are at the brink of being able to actually use Visual Studio to study some actual
C# code, and also to write code ourselves. We will initially see very small examples of
C# code, which are (hopefully) almost self-explanatory. Still, code doesn’t have to be
particularly complex before it becomes more challenging to make sense of it. One
way of making it less challenging to understand code is to add so-called comments to
the code.

A comment is in this context a relatively small piece of text, inserted directly into the
code itself. For our running example, adding a comment could look like this:

21

The green text in line 2 is a comment. The // symbols at the start of the line are
crucial, since they indicate to Visual Studio that whatever follows on this line is to be
considered a comment. A comment has no influence whatsoever on the actual code,
and all comments are completely ignored when Visual Studio builds and runs your
application. They are thus only present in order to help us human beings working
with the code.

A single-line comment like the above must always start with the symbol //. It is also
possible to write comments than span several lines. In that case, you must start the
comment with the symbol /*, and end it with */. Feel free to experiment a bit with
comments in Program.cs.

The ability to add comments to code is very common in programming languages, and
it is consider good practice to add comments to code that has a certain complexity,
to help those that might work with the code at a later time. However, one should be
thoughtful about using comments. A first good rule is to avoid trivial comments. The
comment we just added to Program.cs is actually an example of a bad comment,
since the C# statement itself is rather trivial. Comments should provide real value to
the reader. So, suppose instead we have created some really complex code. This
must be a relevant place to add some comments, yes? It probably is… but it should
also make you think a bit about why you feel that comments are needed. Maybe you
have created code that is overly complex, so the urge to add comments is perhaps a
sign that the code itself needs an overhaul…? We will discuss such considerations in
much more detail later in these notes. For now, just take note of the fact that it is
indeed possible to add comments to C# code directly in the code itself.

22

Exercises

Exercise Start.1

Project Sandbox

Purpose Reality check – Visual Studio up and running

Description The Sandbox project is as simple as it gets – we will just use it to verify
that your installation of Visual Studio is up and running

Steps 1. Load, compile and run the project.
2. Verify that the message Hello, World! Is printed on the screen.

